
Add to Quick Collection
Please use this identifier to cite or link to this item: http://hdl.handle.net/1959.14/19606
320 Visitors
391 Hits
0 Downloads
- Title
- U-series isotope and geodynamic constraints on mantle melting processes beneath the Newer Volcanic Province in South Australia
- Related
- Earth and planetary science letters, Vol. 261, Issue 3-4, p.517-533
- DOI
- 10.1016/j.epsl.2007.07.006
- Publisher
- Elsevier
- Date
- 2007
- Author/Creator
- Demidjuk, Zoe
- Author/Creator
- Turner, Simon
- Author/Creator
- Sandiford, Mike
- Author/Creator
- George, Rhiannon
- Author/Creator
- Foden, John
- Author/Creator
- Etheridge, Mike
- Description
- Young (< 5 kyr) olivine- and clinopyroxene-phyric ne-hawaiites from Mounts Gambier and Schank in the Newer Volcanic Province in South Australia have been analysed for major and trace elements as well as for Sr and Nd isotopes and ²³⁸U–²³⁰Th disequilibria in order to constrain the mantle melting processes responsible for their origin. The rocks are relatively primitive (6.9–9.1% MgO), incompatible trace element-enriched alkali basalts with ⁸⁷Sr/⁸⁶Sr = 0.70398–0.70415 and ¹⁴³Nd/¹⁴⁴Nd = 0.51280–0.51271. Trace element modelling suggests that they reflect 3–6% partial melting in the presence of 2–8% residual garnet. Trends towards low K/K*are accompanied by decreasing ⁸⁷Sr/⁸⁶Sr and provide evidence for the involvement of hydrous phases during melting. ²³⁰Th excesses of 12–57% cannot be simulated by batch melting of the lithosphere and instead require dynamic melting models. It is argued that the distinction between continental basalts bearing significant U–Th disequilibria and those in secular equilibrium reflects dynamic melting in upwelling asthenosphere, rather than static batch melting within the lithosphere or the presence or absence of residual garnet. Upwelling rates are estimated at ∼1.5 cm/yr. A subdued, localised topographic uplift associated with the magmatism suggests that any upwelling is more likely associated with a secondary mode localised to the upper mantle, rather than a broad zone of deeply-sourced (plume) upwelling. Upper mantle, ‘edge-driven’ convection is consistent with seismic tomographic and anisotropy studies that imply rapid differential motion of variable thickness Australian lithosphere and the underlying asthenosphere. In this scenario, melting is linked to a significant contribution from hydrous mantle that is envisaged as resulting either from convective entrainment of lithosphere along the trailing edge of a lithospheric keel, or inherited variability in the asthenosphere.
- Description
- 17 page(s)
- Subject Keyword
- 040300 Geology
- Subject Keyword
- alkali basalt, geochemistry, U-Th isotopes, intraplate magmatism, edge-driven convection, South Australia
- Subject Keyword
- alkali basalt
- Subject Keyword
- geochemistry
- Subject Keyword
- U–Th isotopes
- Subject Keyword
- intraplate magmatism
- Subject Keyword
- edge-driven convection
- Subject Keyword
- South Australia
- Resource Type
- journal article
- Organisation
- Macquarie University. National Key Centre for Geochemical Evolution and Metallogeny of Continents (GEMOC)
- Organisation
- Macquarie University. Department of Earth and Planetary Sciences
- Identifier
- http://hdl.handle.net/1959.14/19606
- Identifier
- mq:2513
- Identifier
- ISSN:0012-821X
- Identifier
- mq-rm-2007001104
- Language
- eng
- Reviewed
