Case-driven Collaborative Classification

Megan Margaret Vazey

Bachelor of Electrical Engineering (BEng) - First Class Honours,
University of NSW (UNSW), 1993.

Master of Business Administration (MBA) - Executive,
Australian Graduate School of Management (AGSM),
University of NSW (UNSW) and University of Sydney (USyd), 1999.

This thesis is presented for the degree of:

Doctor of Philosophy (PhD)

Submitted January 27, 2007
Revised July 27, 2007

Department of Computing,
Division of Information and Communication Sciences,
Macquarie University, Sydney, Australia.
For my Family

and in Loving Memory of

Gladys Hopkins

1916-2005
TABLE OF CONTENTS

TABLE OF CONTENTS.. I

SYNOPSIS... XI

STATEMENT OF CANDIDATE.. XII

ACKNOWLEDGEMENTS...XIII

CHAPTER 1: INTRODUCTION... 1

1.1 Chapter Outline...1

1.2 Context..1

1.3 Objectives and Motivation..3

1.4 Research Questions...4

1.5 Significance ..5

1.6 Outcomes ..7

1.7 Methodology...7

1.8 Thesis Organisation ...8

1.9 Chapter Summary ...12

CHAPTER 2: THE HTG SUPPORT CENTRE ENVIRONMENT... 13

2.1 Chapter Outline...13

2.2 Business Context ..14

2.3 Health Check Interviews ..14

2.4 Observations ...17

2.5 Support Centre Survey..22

2.6 Requirements Analysis ...27

2.7 Chapter Summary ...28
Table of Contents

CHAPTER 3: OTHER KM APPROACHES ..30

3.1 Chapter Outline ...30
3.2 Data Mining ...31
3.3 Popular Search Technologies ...32
3.4 Ontologies ...34
3.5 Knowledge Acquisition and Expert Systems ..35
3.6 Chapter Summary ..38

CHAPTER 4: RIPPLE DOWN RULES...40

4.1 Chapter Outline ...40
4.2 Introduction to RDR ..40
4.3 SCRDR and MCRDR ...41
4.4 Variations on the RDR theme ...60
4.5 Chapter Summary ..63

CHAPTER 5: COLLABORATION FEATURES AND TRENDS...............................64

5.1 Chapter Outline ...64
5.2 Collaboration and Conflict ...66
5.3 Collaboratively Generated Anchor Text ..71
5.4 Folksomonies ..72
5.5 Wikipedia ...74
5.6 The Semantic Web ...76
5.7 Chapter Summary ..77

CHAPTER 6: ADAPTING MCRDR ...79

6.1 Chapter Outline ...79
6.2 Support Centre Challenges for MCRDR ..81
Table of Contents

6.3 Supporting Case Change ... 82
6.4 Supporting Cornerstone Substitution ... 83
6.5 Tracking Case drop-throughs ... 84
6.6 Direct Edit Facility .. 86
6.7 Supporting Case Construction / Configuration 87
6.8 No Notification of changes to the Knowledge 88
6.9 Lost links between General and more Specific Classifications 89
6.10 Chapter Summary ... 90

CHAPTER 7: A MODEL OF KNOWLEDGE TRANSFER 92
7.1 Chapter Outline .. 92
7.2 An Analysis of Case-driven Knowledge Acquisition 93
7.3 Review of Past Experimental Data .. 124
7.4 An Analysis of Rule-driven (RD) Knowledge Acquisition 127
7.5 Discussion and Implications ... 128
7.6 Chapter Summary ... 129

CHAPTER 8: HYBRID CASE AND RULE-DRIVEN KA 133
8.1 Chapter Outline .. 133
8.2 Does RDR Require Knowledge Engineering Expertise? 134
8.3 The Call for Hybrid Case And Rule Driven System 140
8.4 Chapter Summary ... 158

CHAPTER 9: 7CS TOP LEVEL DESIGN .. 161
9.1 Chapter Outline .. 161
9.2 7Cs Condition Mesh ... 161
9.3 7Cs Data Flow Diagram ... 164
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.4</td>
<td>Legacy Problem Ticketing System and Knowledge Base</td>
<td>166</td>
</tr>
<tr>
<td>9.5</td>
<td>Applicability – Solution Space</td>
<td>166</td>
</tr>
<tr>
<td>9.6</td>
<td>Chapter Summary</td>
<td>168</td>
</tr>
<tr>
<td>CHAPTER 10: THE DIAL-HOME PROBLEM CONTEXT</td>
<td></td>
<td>169</td>
</tr>
<tr>
<td>10.1</td>
<td>Chapter Outline</td>
<td>169</td>
</tr>
<tr>
<td>10.2</td>
<td>Problem Scope</td>
<td>169</td>
</tr>
<tr>
<td>10.3</td>
<td>Dial-home System Overview</td>
<td>170</td>
</tr>
<tr>
<td>10.4</td>
<td>Chapter Summary</td>
<td>174</td>
</tr>
<tr>
<td>CHAPTER 11: THE 7CS AND FASTFIX DESIGN CORE</td>
<td></td>
<td>176</td>
</tr>
<tr>
<td>11.1</td>
<td>Chapter Outline</td>
<td>176</td>
</tr>
<tr>
<td>11.2</td>
<td>Users</td>
<td>179</td>
</tr>
<tr>
<td>11.3</td>
<td>RuleNodes and the Rule Mesh</td>
<td>183</td>
</tr>
<tr>
<td>11.4</td>
<td>Attributes</td>
<td>197</td>
</tr>
<tr>
<td>11.5</td>
<td>Cases</td>
<td>199</td>
</tr>
<tr>
<td>11.6</td>
<td>Change Histories</td>
<td>208</td>
</tr>
<tr>
<td>11.7</td>
<td>Case-RuleNode Associations</td>
<td>210</td>
</tr>
<tr>
<td>11.8</td>
<td>Chapter Summary</td>
<td>221</td>
</tr>
<tr>
<td>CHAPTER 12: RESULTS OF THE FASTFIX TRIAL</td>
<td></td>
<td>223</td>
</tr>
<tr>
<td>12.1</td>
<td>Chapter Outline</td>
<td>223</td>
</tr>
<tr>
<td>12.2</td>
<td>User Activity</td>
<td>223</td>
</tr>
<tr>
<td>12.3</td>
<td>Other Statistics</td>
<td>225</td>
</tr>
<tr>
<td>12.4</td>
<td>Combined KA Curves for All Users</td>
<td>226</td>
</tr>
<tr>
<td>12.5</td>
<td>Effectiveness of the Solution</td>
<td>227</td>
</tr>
<tr>
<td>12.6</td>
<td>Case Drop-throughs</td>
<td>228</td>
</tr>
</tbody>
</table>
Table of Contents

12.7 Features Employed by Users ...231
12.8 Experimental results ..231
12.9 Individual KA Curves ..233
12.10 Managing the Complexity for Users ..237
12.11 Collaboration and Conflict ...238
12.12 Inadvertent Gross Errors ...239
12.13 Knowledge Engineering Effort ...240
12.14 Chapter Summary ..240

CHAPTER 13: DESIGN ENHANCEMENTS ..242
13.1 Chapter Outline ...242
13.2 Reciprocity between the Case and RuleNode Views242
13.3 Rolling Up RuleNodes ..244
13.4 Shared Child RuleNodes ...245
13.5 Enhancing Robustness through Inference ...256
13.6 Using Classification Labels ..258
13.7 MCRDR and Ontology ..261
13.8 Prudence ...263
13.9 Chapter Summary ..265

CHAPTER 14: SUMMARY AND CONCLUSIONS ..267
14.1 Chapter Outline ...267
14.2 Thesis Summary ...267
14.3 Claims and Caveats ...270
14.4 Future Work and Thesis Conclusion ..275
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>C.9 Feedback and Collaboration</td>
<td>394</td>
</tr>
<tr>
<td>C.10 Organisational Learning and Continuous Improvement</td>
<td>394</td>
</tr>
<tr>
<td>C.11 Other Requirements</td>
<td>396</td>
</tr>
<tr>
<td>APPENDIX D – CONCEPTS FROM THE LITERATURE</td>
<td>398</td>
</tr>
<tr>
<td>D.1 Information Retrieval (IR)</td>
<td>398</td>
</tr>
<tr>
<td>D.2 Decision Support Systems (DSS)</td>
<td>398</td>
</tr>
<tr>
<td>D.3 Knowledge Discovery in Databases (KDD)</td>
<td>399</td>
</tr>
<tr>
<td>D.4 Artificial Intelligence (AI)</td>
<td>399</td>
</tr>
<tr>
<td>D.5 Machine Learning (ML)</td>
<td>399</td>
</tr>
<tr>
<td>D.6 Data Mining (DM)</td>
<td>400</td>
</tr>
<tr>
<td>D.7 Popular AI, ML and DM Techniques</td>
<td>401</td>
</tr>
<tr>
<td>D.8 Problems with AI, ML and DM Techniques</td>
<td>403</td>
</tr>
<tr>
<td>APPENDIX E – TACIT KNOWLEDGE</td>
<td>404</td>
</tr>
<tr>
<td>APPENDIX F – ONTOLOGIES</td>
<td>405</td>
</tr>
<tr>
<td>APPENDIX G – TRANSCRIPT OF PKS INTERVIEW</td>
<td>408</td>
</tr>
<tr>
<td>G.1 Scope</td>
<td>408</td>
</tr>
<tr>
<td>G.2 New Clients</td>
<td>408</td>
</tr>
<tr>
<td>G.3 History</td>
<td>409</td>
</tr>
<tr>
<td>G.4 Size of the knowledge bases</td>
<td>409</td>
</tr>
<tr>
<td>G.5 Level of reuse</td>
<td>409</td>
</tr>
<tr>
<td>G.6 Comment on IP</td>
<td>410</td>
</tr>
<tr>
<td>G.7 Performance of the knowledge bases</td>
<td>410</td>
</tr>
<tr>
<td>G.8 Pricing Model</td>
<td>410</td>
</tr>
<tr>
<td>G.9 Training</td>
<td>410</td>
</tr>
</tbody>
</table>
Table of Contents

G.10 Collaborative Knowledge Building ...411
G.11 Quality Standards ..411
G.12 Technical features ..411

APPENDIX H – ABOUT ANCHOR TEXT ...414

APPENDIX I – FOLKSOMONIES ...415
 I.1 del.icio.us ...415
 I.2 flickr.com ...415

APPENDIX J – WIKIPEDIA VERSUS BRITANNICA ...417

APPENDIX K – SEMANTIC WEB LANGUAGES ...419
 K.1 Resource Description Framework (RDF) ..419
 K.2 Web Ontology Language (OWL) ...419

APPENDIX L – DARPA KNOWLEDGE SHARING ..421
 L.1 An Interlingua for Knowledge Interchange ..421
 L.2 The Knowledge Representation System Specification (KRSS)422
 L.3 The Knowledge Query and Manipulation Language (KQML)422

APPENDIX M – THE FASTFIX PROTOTYPE SHELL ...424
 M.1 Introducing FastFIX ..424
 M.2 Account Management ..426
 M.3 Login ...427
 M.4 Join / Register ...428
 M.5 Password Reminder ..428
 M.6 Home Page ...429
 M.7 Menu Items ..430
 M.8 Password Changes ..431
Table of Contents

M.9 Logout ...432
M.10 “Check RuleNodes” ..433
M.11 “Check All Cases” ..434
M.12 “Check My Cases” ..435
M.13 “Write Rule Tree” ...435
M.14 “Solutions Preview” ..436
M.15 “Upload Files” and “View Uploaded Files” ...437
M.16 Available Tests ...438
M.17 Summary ..439

APPENDIX N – ACQUIRED RULENODES ...440

APPENDIX O – 7CS IMPLEMENTATION ENHANCEMENTS451
 O.1 Different User Profiles ...451
 O.2 Improved Case-RuleNode Associations ..452
 O.3 Entity Relationship Expiry ..453
 O.4 Case Tracking ..454
 O.5 RuleNode Approval ...456
 O.6 Read Only Users ...462
 O.7 Autonomous Handling of Cases ..462
 O.8 Undo and Rollback ..463
 O.9 Lessons from OLAP ..463
 O.10 Production Subsystems ...464
 O.11 Alternate Embodiments ...465
 O.12 Discussion Forums ...466
 O.13 Summary ..466
APPENDIX P – LIMITATIONS OF MCRDR – AN EXAMPLE468

APPENDIX Q – ROUGH KNOWLEDGE ...473
 Q.1 Discussion of Transfer Probability ...475
 Q.2 Probability of Teaching and Learning ...477
 Q.3 Generalising Case-driven KA ...478
 Q.4 Location Dependent Errors ..479

APPENDIX R – RULENODE RELATIONSHIPS ...480
 R.1 Containment Relationships ...480
 R.2 Abstraction Relationships ...481
 R.3 Semantic Relationships ...481
 R.4 State-based Relationships ...483
 R.5 Temporal Relationships ...483
 R.6 Associated Conclusions ...484
 R.7 An Example RuleNode ..485
SYNOPSIS

The Multiple Classification Ripple Down Rules (MCRDR) knowledge acquisition approach is explored in an environment where knowledge is continuously changing and where multiple agents need to contribute to and learn from the resultant expert system. A collaborative approach to expert system development is proposed in which private individual views and public shared views of the knowledge can coexist, permitting changes in the knowledge to be highlighted, the impact notified to interested parties, and conflicts between agents to be exposed and resolved. By tracking the public and private historical case-RuleNode associations, the proposed approach allows consensus to be built; hence the brittleness of the acquired knowledge can be more rapidly reduced.

The support centre of a major international corporation in the information and communications industry forms a case study in which the nature of trouble-shooting (problem solving) is studied. The research finds that troubleshooting comprises a case-configuration-classification-conclusion cycle. An analogy between collaborative MCRDR and collaborative tagging systems is developed and a stochastic model is derived showing that the trajectories in much of the past machine learning case-driven knowledge acquisition studies can be predicted by the acquisition of classification knowledge on the basis of a random set of incoming repetitive cases, irrespective of the specific case-driven knowledge acquisition approach employed. Further to this, the research highlights the significant amount of domain dependent Knowledge Engineering expertise that can be required by various Ripple Down Rules (RDR) implementations, and proposes that rather than primacy being given to the classification as in conventional rule based systems, or alternatively to the case as in existing RDR systems, primacy should be given to building consensus between collaborating agents in as far as consensus is required to achieve a mature knowledge base.

A collaborative hybrid Case And Rule Driven (CARD) approach to knowledge acquisition known as 7Cs is proposed. The 7Cs approach supports the Collaborative Configuration and Classification of a stream of incoming problem Cases via a set of ConditionNodes linked to their Classes and associated Conclusions. The approach is trialled through a software prototype system known as FastFIX. After less than a day of collective effort the test team had acquired enough knowledge for FastFIX to automatically identify and locate solutions to approximately 90% of problems in the selected sub-domain.
STATEMENT OF CANDIDATE

This thesis is submitted in fulfilment of the requirements of the Doctor of Philosophy (PhD) degree at Macquarie University and has not been submitted for a higher degree to any other university or institution. This thesis represents my original work and contributions. Part of the included top-level design and detailed design appears in U.S. Patent application PCT/AU2005/001087.

The sources of information used in the construction of this thesis include references to the literature, observation, interview, survey, and user-driven software-trials. I have also drawn on 15 years of industry experience as an ICT design engineer, software developer, systems integrator, tester and trouble-shooter. Encouraged by Margaret Vazey (a biologist, zoologist and ecologist), my software development work to support the classification of botanical species for the Friends of Malabar Headland¹ (since 1999) provided the initial inspiration for this work.

I certify that to the best of my knowledge, all sources used and assistance received in the preparation of this thesis have been duly acknowledged.

The support centre survey presented in this thesis has been conducted with the approval of Macquarie University Ethics Review Committee HE25FEB2005-D03895.

¹ http://www.malabarheadland.org.au/
ACKNOWLEDGEMENTS

Unending thanks to my husband Terje for love, support and insight. Without your help, this thesis would not have been possible. Thanks also for the terrific discussions regarding the model of knowledge transfer for case-driven knowledge acquisition (KA) and your derivations of Equations (1), (2) and (5).

Many thanks to our three beautiful children Oden, Zac and Jasmin for your patience and pride. You are a gift. Your love is perfect. Thanks to Mum (Margaret) and Dad (Brian) for your inspiration and much appreciated support. Thanks also to Gerd and Kurt for lots and lots of help as and when it was needed. Much thanks to Wendy for much needed help when moving house mid-stream. Thanks to Heidi, Tony, Nicole, Margo, Dawn, Helen, Donna, Rosie and Robyn for cuddling Jassy and caring for Oden and Zac through the preparations; also to Dr. Bose, Dr. Hector Karunajeewa and Dr. John Hopkins for being terrific role models; and to Mr. Andrew Parker for recognition and encouragement.

Thanks to my industry partner for their financial support, for participating in the observation, interview and survey of trouble-shooters in their support centre; and for supporting and participating in the 7Cs2 / FastFIX3 software trial. Thanks especially to Stephen Wright, Colin Berrell, Chris Bunting, and Kieran McGee for their receptiveness to new ideas, their nurture of this technology, and their perseverance within the HTG4 corporate framework. Thanks also to David Law, John Bach, and Bernard Bravo for their participation and welcome feedback. Much thanks also to Julie Gibson for support and encouragement.

Thanks to Warren Bailey and Sean Blasdall at Access Macquarie, and Ben Smith in the Division of Information and Communication Sciences at Macquarie University for their support in pursuing commercialisation opportunities for the 7Cs system. In addition, I very

2 This research proposes a knowledge representation and knowledge acquisition technique known as 7Cs that supports the \textbf{C}ollaborative \textbf{C}onfiguration and \textbf{C}lassification of a stream of incoming problem \textbf{C}ases via a set of \textbf{C}onditionNodes linked to their \textbf{C}lasses and associated \textbf{C}onclusions.

3 FastFIX is the name of the prototype software developed in this thesis in order to trial the 7Cs design concept.

4 To protect its confidentiality, the sponsoring company is referred to as High Tech Global (HTG). HTG has sales channels in more than 50 countries and annual revenues of ~$US 10 billion. It is one of the world’s 10 largest ICT companies as measured by market capitalisation, and it employs more than 25,000 staff globally.
Acknowledgements

much appreciated receiving the 2005 Postgraduate Innovation Award from Macquarie University for the collaborative classification software solution presented herein.

Thanks to all the anonymous reviewers for the conferences and journals where my publications were submitted. Your considered review and feedback has helped me make the work so much stronger.

Thanks to Lee Flax at Macquarie University for academic supervision, encouragement, and helpful thesis review. Your “keep going” motto, technical review, and advice with thesis style and presentation have been very much appreciated.

Finally, thanks to Debbie Richards for academic supervision; for supporting my initial APA(I) scholarship application and subsequent upgrade to a PhD and RAACE scholarship; for the loan of various books and references; for assistance, advice, and encouragement with publications; for much appreciated work on the co-authored papers; for supporting my attendance at relevant conferences; for review of the ethics application for the HTG survey; for compilation of the invention disclosure for Access MQ; for review of the PKS patent and editorial support in the creation of the FastFIX / 7Cs patent; for suggestions regarding thesis compilation; and for repeated technical review of various discussions herein. Your assistance and competence in your final review of the thesis prior to examination was very much appreciated.

The first two years of this work was funded via the Australian Research Council Linkage Grant LP0347995 APA(I) scholarship. The final year was funded by Macquarie University via a RAACE scholarship, and by an HTG industry top-up scholarship.