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6.2.2 Hierarchical Sibling Intractable Hashing

Given k-sibling intractable hash function H®) and a set M = (m1, ..., my2) of mes-

sages. A k2-sibling intractable hash function denoted as
H*) — g® o g *)
is a collection of k£ 4 1 k-sibling intractable hash functions where
H, = U; o H with collisions in M; = (M1, .., Mit1)k)
fort=0,...,k—1, and
H; = Uy, o H with collisions in X = {h; = H;(M;);i=1,...,k}.

To find the hash value of a message, it is not necessary to know all polynomials Uj;.
For a message m € M;, it is sufficient to know two polynomials only, namely, U; and
U.

In general, sibling intractable hashing with £" colliding messages can be defined as
H*) — g® o g&—h

for r > 2. Similarly, to compute a hash value for a single message, it is necessary to
learn r polynomials of degree k.

The polynomials U; ;(x) are in fact arranged in a tree structure. The leaves of the
tree are Uy ; for j = 1,...,k""'. The next layer is created by polynomials Uy j; j =

1,...,k"? and so on. The root is U, ;. Figure 6.1 illustrates the concept graphically.

6.3 Authentication of Packets

Message authentication is an important service in information security. Typical au-
thentication schemes such as digital signatures use public-keys, while Message Authen-
tication Codes (MAC) use private keys. Digital signatures are known for their high
computation overhead, while MAC does not provide non-repudiation service. In cases
such as in IP communication, we may have a stream of independent messages to be au-
thenticated. Neither the typical digital signatures provides efficient solution, nor MAC
provides enough security service. Therefore, new techniques are required to provide
both security and efficiency.

A further motivation is the requirement by the intermediate nodes in IP network
for a technique to authenticate the packets in their transitions from source to destina-

tion. IPSec [90] is a security mechanism designed to provide security services for IP
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value requires access to and hashing all values along the authentication path from leaf
to root.

To change a public (leaf) value or add more values to an authentication tree requires
re-computation of the label on the root vertex. For a large balanced tree, this may
involve a substantial computation. In all cases, re-establishing trust of all users in this
new root value is necessary.

The computational cost involved in adding more values to a tree may motivate
constructing the new tree as an unbalanced tree with the new leaf value being the
right child of the root, and the old tree being the left. Another motivation for allowing
unbalanced trees arises when some leaf values are referred far more frequently than

others.

6.3.3 Security Issues
There follow some remarks on the security of the schemes:

e the scheme signs simultaneously all datagrams using a single signature. The
important difference of this scheme from other schemes is that verification of
datagrams can be done independently (or in parallel). In other words, to authen-

ticate datagrams, one does not need to know all datagrams,

e no authentication is required for the coefficients fetched from a read-only registry
(assuming coefficients have been fetched from the ‘right’ registry; otherwise, an
enemy can fake the packets). This is because, if entries are tampered with, then
packets will be rejected since the final hash recovered from the signature will be

different from the hash value obtained from the datagrams and the polynomial,

e the only security problem could be of denial-of-service attack when an enemy

may intentionally modify polynomial coefficients to reject the datagrams,
e in both flat and hierarchical k-sibling approaches, a single signature is required:

1. the description of public polynomial coefficients used in the k-sibling in-
tractable hashing takes about n integers each of size 160 bits for SHA-1,
where n is the number of packets of the message M and k > 2. If k=2, then

this number = 2n.

2. the scheme may be used against denial-of-service attacks. In particular, it
would be possible for receivers at the intermediate nodes to ignore those

packets that have failed to pass k-sibling hashing verification.
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as SHA-1. One of the new approaches in designing such signatures is the BiBa one-
time signature [121]. BiBa is an acronym for Blns and BAlls. It uses the bins and
balls analogy to create a signature. To sign a message m, the signer first uses random
precomputed values generated in a way that a receiver can authenticate them with a
public key. These precomputed values are called SEALS (SEIf Authenticating vaLueS).
The signer then compute the hash of the message h = H(m)), and then computes the
hash function Gj. Now, the collision of SEALS under a hash function G} forms a
signature: Gy(s;) = Gp(s;j), where s; # s;. The BiBa signature exploits the birthday
paradox property, in that the signer who has a large number of balls finds a collision
(signature) with high probability, but a forger who only has a small number of balls
has a negligible probability of finding a signature.

The BiBa signature scheme has desirable features such as small authentication space
overhead and fast verification time. However, its public keys are very large, the time
needed to generate a signature is higher than any other known system, and it requires
parallel processors to find collision of SEALS. This makes signature generation a large
computation overhead. Also, it uses an ad hoc approach to find collisions among the

‘SEALS’ to the corresponding bin, which results in high signature generation time.

6.4.1 The Scheme

We propose a variant approach to BiBa by using the SIFF method. SIFF provides
hashing with a controlled number of easy-to-find collisions. In other words, we apply
a deterministic approach in finding a collision (signature). As for signatures based on
public-key cryptography, we assume that we are going to produce signatures for digests
of messages. Thus, suppose that messages to be signed are of constant length (160 bits
if we use SHA-1).

Let SIFF;(x) be an instance of k-sibling hash function that for & inputs x; o, . . ., Z; 51

produces the output «; or
SIFF;(I%]) = Q4 for ] = 0, ey k—1

The function applies a polynomial U;(z) = ;o + w12 + ... + u;p—12%! that collides

for the inputs z;g, ..., 251 Or
Ui(H (z;)) =

where H is a collision-resistant hash function. Assume that the message to be signed

is M = (mq,...,m;) where m; are v-bit sequences. The message M consists of vt



6.4. K-Sibling One-time Signature 102

bits (typically of t 1 ¢ bits o si o o ti si at st

S ¢ of i sta c¢sof ac 1 sta c applis  collisio s ass o i

t follo i al oit






6.4. K-Sibling One-time Signature 104

6.4.2 Security Issues

Suppose that an adversary knows a signed message and tries to modify either message or
signature such that the forged (and signed) message passes verification. Obviously, the
adversary also knows the public information. Informally, if the adversary is successful
it means he was able to create either a new collision (which was not designed by the
signer) or was able to guess one of the strings r;,,. The first event is excluded if we
assume that the SIFF is collision resistant. The probability of the second event can be
made as small as required by choosing an appropriate length of the strings r; ;. It is
important to note that the above considerations are valid only if the public information

about signatures is authentic.

Definition 6.1 Existential Forgery on k-sibling one-time signature
Let v be the security parameter of the signature. We say that the probability of an
existential forgery (in polynomial time) of a k-sibling one-time signature is p(v) if there

exists a probabilistic adversary algorithm A having as the input:

e the function H
e the polynomials Uy, Us, ..., U,
o the value oy

e the observed message M = (my,ma,...,my) and its valid signature S(M) =

(rl,ml y'2,ma s - "Tt,mt)

which can produce, in polynomial time in v and with probability p(v), a message M' =

(my, mb, ...,my) # M and its valid signature S(M) = (s1, S2, ..., St)

Theorem 6.1 For each polynomial (), there is a value v of the security parameter,
such that the probability of an existential forgery (in polynomial time) of a k-sibling

one-time signature is less than 1/Q(v).

Proof. Let Q(v) be a polynomial where v is the security parameter of the signature.
Since all U;o H,i =1...t; are STFF, and therefore one-way functions, there exists a
value v such that Pr(UY o H(x) = UY o H(B(U; o H(x))) < 1/Q(v) for each i, each x
and for each probabilistic polynomial time algorithm B.

Assume a probabilistic adversary algorithm A as described in the existential forgery

definition.
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If we denote:

B =Ui(H((s51,m})))
((52, ml27 51)))
((53, mév 52)))

By = Ui(H ((s1, m3, Bi-1)))

then /Bt = O4.
Denote z1 = (rim;,m1), 1 = (s1,m1), and for 2 < w < ¢, xy = (Tymy s M, Cw—1)

and Yy, = (Sw, M, Buw—1). We consider two cases:
Case 1: There is an index w > 1 such that 8, = a,, and [,_1 # ay,_1. Then y, # x,.

Case 2: For all 1 = 1,2, ...,t, 3; = ;. Since M # m, there is an index 1 < w < ¢ such
that v, # x,.

In both cases, there is an index w such that y,, # x,.

We design a probabilistic adversary algorithm B which proceeds as follows:

1. simulates A and produces v polynomial p(v) a message m = (m/, m, ..., m}) and

its valid signature S(m’') = (s, sb, ..., s})

2. continues by computing

ar = Uy (H((r1,m,,m1)))
pr = Uy (H((s1,m})))
ay = Us(H((romy, ma, 1))
B2 = Us(H((s2,mb, 31)))

Qyy—1 = Uw (H((’rw,mwa My—1, aw72)))
/Bwfl - Uw (H((Swfla m{u;fla ﬁw72)))

then
_ _ /
sMw - - - ) w? -
(Twm s MMy 5 Ol 1) Ty #yw (sw m ﬁw 1)

and
Uw (H (yw)) = Uw(H (zy))
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and with a group of signers. We start with one-time signature for the case when a signer
wants to delegate his one-time signature to a proxy who would sign on his behalf. Then
in Section 7.5, we show how it is possible to construct a threshold one-time signature
using the Shamir secret sharing method. This may happen with or without the aid of a

trusted party. Finally, in Section 7.6, we design a scheme for threshold proxy signature.

7.2 Related work

Lamport [97], Rabin [107], Merkle [108] and GMR [66] are well known examples of one-
time signature schemes. They share the same basic idea, and are based on committing
to secret keys via one-way functions. Rabin uses an interactive approach for verification
of signatures with the signer. These schemes differ in their approaches, but they share
the same idea: only one message can be signed using the same key. Once the signature
is released, its private key is not used again; otherwise, it would be possible for an
adversary to compute the secret key.

A new approach to designing such signatures is the BiBa one-time signature [121].
The BiBa signature exploits the birthday paradox property. A large number of secret
keys is used to find collisions among the generated keys associated with the message.
This way of signing requires a long pre-computational time. Reyzin and Reyzin [129]
solve BiBa’s disadvantage of having a very long signing time. Their idea is to calculate
the number of required keys according to the size of the message and pre-determined
length of the signature. Based on this, key generation would be very fast, and hence
signing is faster.

One-time signatures have been used in group communication for authenticating
streaming applications in multicast communication. Gennaro and Rohatchi [64] used a
chained method with one-time signature. Rohatchi used a k-times one-time signature
based on an on-line/off-line approach. Perrig used it in Tesla [122]. Al-Tbrahim et al
in [7] introduced k-sibling one-time signature for authenticating transit flows. Wang

et al in [162] used oblivious transfer protocol for designing proxy one-time signature.

7.3 A class of one-time signature schemes

In this section, we establish a model for one-time signature schemes. The model is not
aimed at introducing a new kind of signature. We want to set a common view of several

well-established signature schemes in order to be able to apply any one of them in our
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a signer S, a proxy P, a verifier V, and a trusted party T'P. It uses the one-time
signature scheme O = (M, X, Y, h,v, w) where X is a sufficiently large set. In addition,

we assume that h is extended to h: X UM — Y while still preserving its one-wayness.
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The proxy uses its private keys, and the public keys are stored with a trusted party;
hence, the proxy cannot deny signing or revealing the secret to a third agent, which is a
danger occurring in most of the established proxy signature schemes. Since the signer
and the proxy do not share the same key, non-repudiation is achieved. Sending keys
by the proxy to the signer in the key generation phase does not compromise security
since these keys will become public in any case. The role of the original signer is to
endorse the public-keys generated by the proxy signer to the registry. This step is

crucial; otherwise, any agent may claim itself to be a proxy for the original signer.

7.5 A (t,n) threshold one-time signature scheme

A particularly interesting class of society-oriented cryptography is the threshold cryp-
tographic, which deals with transformation of subsets of ¢ or more participants from
a group of n members. A digital signature is an integer issued by a signer which de-
pends on both the signer’s secret key and the message to be signed. In conventional
cryptosystems, the signer is a single user. However, the process of signing may need
to be shared by a group of participants. The first attempts at designing a shared
signature were made by Boyd [27]. Threshold RSA [53] and Threshold ElGamal [101]
signatures are examples of threshold multisignature schemes that require the presence
of ¢t participants of the group to sign a message. Both schemes exploit the threshold
Shamir secret sharing method to generate shares of signatures.

Here, we attempt to expand the idea of threshold signatures from the conventional
cryptosystems transformations into one-time signatures in order to benefit from its
efficiency properties in speeding-up the verification process. Our model consists of
a group of signers S;,7 = 1,2,...,n and a verifier V. A one-time signature scheme
O = (M,F,Y,h,v,7) is used, where F is a finite field and Y is a finite set, and both
are sufficiently large. A threshold value ¢ < n is specified in advance. Not less than ¢

signers are required to sign a message.

7.5.1 A scheme with a trusted party

In our first scenario, two more parties are involved: a trusted distributor D, and a
trusted combiner C.

The idea behind this scheme is to let the distributor D choose the secret keys of
the general one-time signature scheme of the group.

The shares of these secret keys for the particular signers are computed by D using






o d sh ds bu o
Distributor D

1. chooses randomly v pairwise distinct elements s; € F' j=1 ... v

2. computes the v values p; =h s; j=1 ... v and makes them public

registered to the group name

3. chooses randomly pairwise distinct non-zero elements z; 1 =1 ...

from F' and makes them public

4. chooses randomly v polynomials f; © = fjo+ fjaz + -+ fj412!

forj=1 ... v satisfying f; 0 = f;0 = s,
5. computes s5;,; = f; x; t=1... j=1...v

6. sends s;; j—1,., by a secure channel to the signer S; ¢ =1 ...

secret share for the partial signer .S;

S
Signer S; i € {iy i ... it}

1. finds j; jo ... Jr =7 m

2. sends the partial signature s;; s;ij, ... S;j toC.
Combiner C
1. waits to receive partial signatures from at least signers S; ... S;,
2. using Lagrange interpolation, recovers the polynomials f;, * &k = 1 ...
based on the conditions fj, x;, =i, - - fix Tix = Sirj,
3. finds s;, s5, ... 55, = fj.0 fioo oo fino
4. sends m s; sj, ... s, toV.
V fic o
Verifier V

1. finds j; jo ... Jjr =7m
2. fetches p;, k=1 ... r from the registry

3. checks whether p;, =h s;, k=1 ... 1
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Since the usual Shamir perfect secret sharing is used, at least ¢ signers are necessary
to find any of the group secret keys. The fact that at most one message will be signed
using the same signature may be guaranteed by the trusted combiner, so the multiple
signature problem vanishes. In our scheme, the trusted distributor D knows all the
secret, keys; therefore, his reliability must be without doubt. The next version, without
a trusted party, avoids such strict requirements. Observe that the combiner C' knows
only those secret keys which are used for the signature and which will be revealed to
the verifier.

The computation of the shares involves nv times evaluation of a polynomial of
degree t — 1 by D and r times Lagrange interpolation of a polynomial of degree t — 1
by C. In addition, D, V and each partial signer must compute w(m) and D and V'
compute v and r values of the function h, respectively. The signers may compute 7 in
parallel. It is worth noting that the verification of the one-time signature scheme is as

efficient as without secret sharing.

7.5.2 A scheme without a trusted party

The scenario without a trusted party works the same way as the one with the trusted
party; the steps of the distributor D and combiner C' are performed by the signers

themselves. In particular, the set of n signers is used as a parallel n-processor computer.
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Let ¢ be the minimum length of a signature and v the total number of secret keys.
In our scheme, each of the signers generates [v/ | secret keys. We claim that if
[v/ ] —1 <o, then at least out of the signers are necessary to create a valid
signature. Indeed, —1 signers know at most [v/ ] —1 secret keys. If the condition
holds, this is not enough to create a signature of length ry. On the other hand, the
multiple signatures problem arises again here. Several messages may be signed even
without malicious intention, since two independent subgroups of size may sign two
different messages. An improper solution of this problem may allow an existential
forgery in the following way. After a valid signature of some message is created, a
malicious agent possibly identical with a subgroup of at most — 1 signers may use
some of the secret keys from the signature, in combination with the secret keys known
to the subgroup of signers, to create a signature of a different message. This problem
may again be resolved by using the “trusted registry” as in Section 7.4; the scheme
and the proof of its security is provided in Section 7.6. We leave open the problem of
designing a better scheme for one-time signatures that would solve this problem.

The complexity considerations from Part 7.5.1 are valid, except that, instead of the
time necessary for computing v polynomial values, the time for computing max [v/ ] =
v values is required, since the signers may compute in parallel. In a similar way, only
the time for [r/ ] Lagrange interpolations is necessary. How realistic is the condition
[v/ ] —1 <ry? If the scheme of Lamport [97] is used to sign a message of length
1, then v = 24 are generated, and the signature consists of y keys. Our condition is
satisfied if < /24 1.

7.6 A (t,n) threshold proxy one-time signature scheme

In this section, we combine the ideas from Section 7.5 and Section 7.4 and propose the
following model. A group of signers S; i =1 2 ... wants to allow any subgroup
of at least signers to sign a message using a one-time signature. In our solution, the
group will play the role of the original signer, who delegates his right to use a one-time
signature to any subgroup of <  proxy . The signature is to be verified by a verifier
V. A one-time signature scheme O = M F'Y h v m with the security parameter K
is used, where F' is a finite field and Y is a finite set, both sufficiently large. Again,
we assume that h is a one-way hash function, h : M U F' — Y. The trusted party TP
is required only to keep the public keys and to prevent repeated signing. The start of

the keys generation should be initiated in a suitable coordinated way.



g n ration and shar distribution

Signer S; 1=1 ...

. chooses randomly a non-zero element z; € F' and makes 7 z; public

. chooses randomly s; € F' secret key for each j =1 ... v such that

j—1mod +1=1
. computes the value p; = h s; and sends j p; to TP

chooses randomly a polynomial f; = = fjo+ fjix + -+ + fj—12' ! satisfying
i 0 =fio=s5;

«/
. computes sy = f; vy =1 ...

sends sy ; by a secure channel to the signer Sy i =1 ... 7' #i secret share

for the signer Sy

Trusted Party TP

1. verifies that each p; is from a proper S; a one-time signature of S; can be used
for signing the pair j p;
2. makes p; po ... p, public, registered to the name of the group.
Signing

Signer S; i € {iy g ... it}

—_

finds 51 g9 ..o g =T M

. computes ¢ = h m and registers this value with T P; if ¢ is different from a

value already registered with T'P, S; stops signing

sends the partial signature s;; s;j, ... s : the triple 7 j; s;;, is sent to

Si, where g= jp—1mod +1k=12...7r

using Lagrange interpolation, based on the conditions f;, x;, = si, 5, fi, Tie =
Sigjx -+ Jjx Tii = Si,j, recovers the polynomial f;, x for each complete -
tuple 41 Ji iy, --- G Jk Sig, received.

. for each polynomial f; recovered, finds s; = f;,

. for each polynomial f; recovered, sends m j s; to V.
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Verification

Verifier V

1. after receiving the first triple (m, ji, s;,) finds (ji, jo, ..., ) = (M)
2. computes ¢’ = h(m)

3. fetches p;,, k=1,...,r and ¢ from TP

4. waits until all triples (m, ji, s;,), k =1,...,r are received

5. checks whether p;, = h(s;,), k=1,...,7 and ¢’ =q.

As in Part 7.5.2, each of the signers knows at most [v/n] secret keys of the group.
Therefore, (t—1) signers will not be enough to sign a message only if [v/n] (t—1) < o,
where 7( is the minimum signature length for messages under consideration. This fact

is, expressed more formally in the following theorem.

Theorem 7.1 Let Q) be a polynomial. Let [v/n]| (t —1) < ro. Assume an adversary
A who knows at most [v/n] (t — 1) secret keys and at most t — 1 shares for any secret
key. Then the probability that A will produce in time Q(K) a valid signature for some
message is less than Q(K)/2%.

Proof. Since [v/n] (t—1) < r¢, A has to find at least one additional value of a secret
key. To do this in time Q(K), A has to find either the share by breaking the perfect
secret sharing algorithm of Shamir, or the one-way function h. Neither can be done
with a probability greater than Q(K)/2%. O

We do not assume in the theorem that A has a knowledge of at least one valid
signature. If this is the case, then trying to forge a signature for another message
makes no sense, since the verifiction will fail on the information kept by the TP.
However, there is another problem connected to the involvement of the T'P which we
call a blocking attack. A malicious agent may send a fake hash of a message to the TP
without an intention of signing the message. This will block the possibility of any valid
signing by the group. This can be avoided by the following activity of the T'P. In the
key generation and share distribution part of the scheme, T'P chooses a random value
a; for each signer S; and sends it to S; by a secret channel. In step 2 of the signing
part, each .S; sends the pair h(m), h(h(m)||c;) to the T P. When the T'P receives ¢ such






Chapter 8

Authentication of Anycast Communication

Anycast is a communication mode in which the same address is assigned to a group of
servers and a request sent for a service is routed to the “best” server. The measure of
best could be the number of hops, available bandwidth, load of the server, or any other
measure. With this scenario, any host could advertise itself as an anycast server in order
to launch a denial-of-service attack or provide false information. In this chapter, we

solve this problem by proposing an authentication scheme for anycast communication.

8.1 Introduction

The Internet is increasingly being viewed as providing services rather than just con-
nectivity. As this view has become more prevalent, the important considerations in
the provision of such services are reliability and availability of the services to meet
the demands of a large number of users; this is often referred to as scalability of the
service. There are many approaches to improving the scalability of a service, but the
common one is to replicate the servers. Server replication is the key approach for main-
taining user-perceived quality of service within a geographically widespread network.
This is empowered by the underlining network infrastructure known as anycast com-
munication. The anycasting communication paradigm is designed to support server
replication by allowing applications to easily select and communicate with the best
server, according to some performance policy criteria, in a group of content-equivalent
servers.

With regard to the above description of anycast communication, the system can
be subject to a number of security threats. In general, there are at least two security
issues in anycasting, which are mainly related to authentication. First, it is clear
that malevolent hosts could volunteer to serve an anycast address and divert anycast
datagrams from legitimate servers to themselves. Second, eavesdropping hosts could

reply to anycast queries with inaccurate information. Since there is no way to verify
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8.2.1 The Schnorr signature

Let p,q be primes such that ¢ divides (p — 1) and ¢ > 2¥ where k is the security
parameter. Let g € Z7 and let H be a hash function with values in Z,. The Schnorr

signature scheme ([137]) can be described as follows:
Initialization

Signer
1. Chooses the secret key = € Z;
2. Computes the public key

y =g~" (mod p).

Signing of a message m

Signer

Chooses a random K € Z.
Computes 7 = g% mod p.
Computes e = H(m,r) mod q.
Computes s = K + ex mod gq.

A

Sends (m,r, s) to the client.

Verification of the signature (r,s) of m
Verifier
1. Computes e = H(m,r) mod q.
2. Checks whether r = ¢g*y® (mod p).
3. Accepts if the check is O  otherwise CT.

8.2.2 Schnorr ase ro signatures

ro y signature schemes could be designed using any standard and secure signature
scheme. owever because the Schnorr scheme proved to be an elegant and secure sig
nature scheme in the random oracle model [12 ] a number of pro y signature schemes
that use the discrete logarithmic problem apply the Schnorr scheme as the standard
signature algorithm.
oldyreva alacio and arinschi in [25] proposed a provably secure scheme called
the Triple Schnorr pro y signature scheme which is modi ed from the [ 2] scheme for
warrant based delegation. They also presented a formal de nition and security notion
for their pro y signature.

Lee imand im (L  )in[ |proposed a Schnorr warrant based pro y signature






Group Coordinator D

Delegations

Y

i (3) (B ORONO

Connection

Client C




pu



8.4. The Anycast Scheme 131

8.4 The Anycast Scheme

In our anycast scheme, the group coordinator G' will play the role of the original
signer, which delegates his signature rights to all the members of the anycast group
which act as proxy signers. His public key y will be the public key of the whole group
of anycast servers. For this delegation, we propose using the nonrepudiable proxy
signature scheme from [167] based on the scheme from [105].

Assume a group of anycast servers A, As,...,A,, a client C' and a group
coordinator G. Let p,q be large primes such that ¢ divides (p — 1) and let ¢ €
7 = GF(p). Let M be the set of messages (not necessarily of uniform length) and
H : M — Z, be a hash function.

In the initialization part, we assume that the group coordinator G has already

chosen his secret key x, and public key y = g”mod p is registered with the trusted
party.
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Initialization
Group Coordinator ¢ Server A; (i=1,...,n)
1. For 1 ¢+ n
00 r o i ,
O P = O

PEN) i ro r r

r o

i
i = ; O 0 0
; O oor Or.

0 i i z( o )
i O ) ro r r

Sinin oa e ae andveri ationo t e 1 nature

Server A, Client
1 00 T 0

0 = 0

0 ()

0 = 0
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exposed to the public. It is intended for verification for a specific verifier only.

This variation of digital signatures is called designated verifier signatures (DVS)
and it was firstly proposed by Jakobson, Sako, and Impagliazzo [85], and independently
by Chaum [34]. Vergnaud and Laguillaumie in [158] provide a new scheme with a
formal security model. The DVS are intended for a specific and unique designated
verifier: the only one who can check their validity. Such signatures have numerous
applications. For example, in group communication, a group (multicast) manager
requires, for security reasons, to control the joining of users into a multicast domain.
Therefore, a protocol that authenticates the joining of a particular host to a group is
required. The verification is performed by a one-and-only-one entity, that is, the group
manager. Calls for tenders, electronic voting, electronic auction or distributed contract
signing are other examples. It can be noticed that a very efficient way to produce
DVS is to use MAC or HMAC under the symmetric-key cryptography. Therefore,
prior exchange of the secret keys is required in secure channels. A DVS scheme is
called asymmetric if it uses a public-key cryptosystem. DVS in general do not provide
non-repudiation, as is the case in any typical digital signature. Later, Vergnaud and
Laguillaumie in [157] generalized the idea of DVS into multi-designated verifiers, where
more than one verifier can be designated for verification.

DVS was one possible variation to digital signatures in terms of restricting the
verifiers. Another variation to digital signature in terms of extending the function-
ality is required. Typical digital signatures provide authenticity but do not provide
confidentiality of information, whereas in some applications, both confidentiality and
authenticity are required. Therefore, another variation of digital signatures is needed
to provide both privacy and authenticity. This sort of digital signature is called sign-
cryption, and it was first introduced by Zheng [169] at Crypto 1997. For example, stock
exchange communication requires authentication of the source of multicast as well as

encryption of the private data.

9.3 Theoretical Description and Construction

The main structure of our system is based on the Shamir threshold secret sharing
method described in Section 2.7. The main idea relates to the concept of verifiable
secret sharing, illustrated in Section 2.7.3.

Shamir’s (t,n) threshold scheme (¢ < n) is a method by which a trusted party

computes secret shares s;, 1 < i < n from initial secret s, such that any ¢ or more users
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who pool their shares may easily recover s, but any group knowing only ¢t — 1 or fewer
shares may not. Shamir secret sharing is based on Lagrange polynomial interpolation,
and on the fact that a univariate polynomial y = f(x) of degree ¢ —1 is uniquely defined
by ¢ points (z;,y;) with distinct x; (since these define ¢ linearly independent equations
in ¢ unknowns). All calculations are done in GF(p) where the prime p is selected to

satisfy the security requirements. The scheme is constructed by a trusted party.

Since Shamir secret sharing attempts to create a unique polynomial which passes
through a number of points, it can be exploited to produce a signature for a message.
When the points (or shares later) were designed to be the signer and the verifier keys,
then a mutual correlation is established and peer-to-peer authentication is possible.

The main idea of our construction is to treat the message that needs to be au-
thenticated as a secret, as in a secret sharing scheme, and then to generate shares
of the secret. The challenge for the verifier is to reconstruct the secret based on the
knowledge of the shares, much as any secret sharing technique. If the verifier is able to
compute the secret based on valid shares, this proves that the message is genuine since
mathematically only unique points (shares) can reconstruct the secret. Any difference
in the points would not reconstruct the message (secret). The selection or generation of
shares should be difficult in order to prevent the adversary from forging the signature.

The main components of the construction are (3,3) Shamir secret sharing scheme,
an intractable hash function H, and the Diffie-Hellman key-agreement cryptosystem
[56]. The hash function is used as a one-way function. The Diffie-Hellman cryptosystem
is used to establish a shared secret key over public channel. The public keys of the
signer and the verifier are used as shares in the Shamir secret sharing system, and at
the same time they provide strong authentication and mutual correspondence between
the two communication parties.

Suppose two parties A and B want to establish an authentication relationship using
their key pairs (ska, pka), (skp, pkp) respectively, where sk is the secret key and pk is
the public key. Then, three points of the following shape need to be created:

o = pkiFa B =pka, s = H(m||«)
where
f0) =5 f(1) =a,f(2)=p
The signature of the message m is 0 = f(3).

This means that the triplet «, 5 and o are the shares of (3,3) Shamir scheme with

the secret s. Hence, the system is constructed from three linear equations in three
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Initialization

1. Setup : choose g as primitive element in GF(q) using security parameter k,
2. SKeyGen: choose Signer secret key sk, and compute pk, = g**4,

3. VKeyGen: choose Verifier secret key skp and compute pkp = ¢**3

Sign (Signer A):

1. let

sk A

@ = pkB ) B = pka
2. choose t €p [1,q — 1]
3. compute the secret s = H(m||a!)

4. design the polynomial
f(x) = fo+ fix + for®
such that
fO=s, f)=a",  [f(2)=p

(There are three equations and three unknowns, so there is a unique f(x).)

5. compute the signature = f(3).

(the triplet: of, § and are shares o (3,3) Shamir scheme with the secret s)
. transmit (m, ,t) to the verifier.
Ve iy (Verifier ):
1. etch pky
2. compute o = pk*F®
3. compute the secret s = H(ml|a!)

4. compute the secret s ased on the triplet o, 3, t and

5. 1 s = s then accept, otherwise return
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9.4.4 Security Analysis

Theorem 9.1 Let A be an EF — CMA — adversary against DVS in the random oracle
model, which produces an ezistential forgery with probability ¢ = Succ%(,%’j’j(k), within
time t, making qx, qs and gy queries to the hash oracle H, to the signing oracle ¥ and

to the verifying oracle (respectively). Then there ezist € € 10, 1] and t € N verifying:

€>e— (‘IH‘HIEI)C‘IE'HIT
t <t+(qu+q2)((qn + q=)Tppn + Trap + ax(Tpory + Toom)) + auTpoy

such that GDH can be solved with probability €, within time t; where Troly, TEqgp and
Tppr denote the time complexity for constructing the polynomial f, time complexity
for evaluating an exponentiation in G, and the time complexity of the DDH oracle,

respectively.

Proof.

(,v) GDH



DVS.V ify -~ B

Pl =
1 pka U pks vV
Uuv GDH
N U 74
G
G g
9" x [ ]
Pr] 1] = Pr| ]
2
H List a {0 } x{g
— H List a L
— H List 5 1
a UV Dfi H

2extra check to simplify the proof; otherwise, extra steps are needed to subtract from the success
probability
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9.5 Digital Signcryption

The scheme in the previous section provides peer authentication between peer enti-
ties. The proposed scheme in this section provides authenticity and privacy as well as
integrity and identifiability all-in-one shot.

The first attempt to combine more than one security service in a single algorithm
was by Zheng [169] at Crypto 1997 in his pioneer work. He addressed the question
of the cost of secure and authenticated message delivery: whether it is possible to
transfer a message of arbitrary length in a secure and authenticated way with an
expense less than that required by signature-then-encryption. There, the goal was
to provide simultaneously encryption and digital signature in a single step and at a
cost less than individually signing and then encrypting. His motivation was based on
an observation that signature generation and encryption consumes processor cycles,
and also introduces “expanded” bits (i.e. size) to an original message. Hence, the
cost of cryptographic operation on a message is typically measured in the message
expansion rate and computational time invested by both sender and recipient. With
typical standard sign-then-encrypt, the cost of delivering a message in a secure and
authenticated way is essentially the sum of the cost of digital signature and that of
encryption. The answer to the question in [169] was proposed by an approach based
on the discrete logarithm problem of a shortened form of El-Gamal based signatures.
In this approach, the secret key k was divided into two short sub-keys k; and ks; the
first was used for encryption, and the latter for signing. Zheng left as an open and
challenging problem the design of other signcryption schemes employing any public-
key cryptosystem such as RSA, or any other computationally hard problem. Later,
in [152], Steinfeld and Zheng introduced another signcryption scheme based on the
problem of integer factorization. The problem was also expanded to symmetric-key
setting in other works [94]. Other studies by Bellare et al [16, 14], An et al [8], and
others [123] have studied the fundamentals of this cryptographic primitive and have
set its security proofs.

Our proposed scheme provides more services than typical signcryption. It provides
not only privacy and authenticity, but also integrity. The transmitted signature requires
minimum space overhead, hence it is superior in saving the bandwidth, especially in
congested communication channels. The verification is efficient and requires relatively
small computation time. The scheme is useful in applications which require strong
security, yet with low space overhead. Our design is focused on authentication of the

joining operation to a multicast group and on providing confidentiality as well.



o o fo poad ga m

Signature Scheme

Description A d d al ,dg al g a m Y dfi da

> = (GenSig, Sig, Ver).

Security Notions A a k aga g a m a la fida od g o
goal of ad a ado 0 a a . T og (.. alad
dfi 1)a ak all d a existential forgery, m a a ak a pod
a gl m ag/ ga pa . m p k doffog
ad o  Non Ezistentially Forgeable (NEF). a ak a a oal
of aldm ag / g a pa a ak all d a known-message attack
(KMA). Ho , f 1 oa m ag adoml ad foml o |,
a ak m d a random message attack (RMA). F all | m ag ma

o ,adap 1, ad a m If, a d all d a chosen-message attack
(CMA).

Public-Key Encryption

Description A mm poop | -k p o m [[] dfi d
algo m:
e GenEnc, key generation algorithm ,o p 1k k

paam ,pod apa (pksk)ofp 1 adp a k ;

e Enc, encryption algorithm ,o0 p ofapla x madap 1| k

pk,o p a p X ¢

e Dec, decryption algorithm , 0 p ofa p x cadp a k
sk, o p a oadpla x m( L, fc a ald p X ).
Security Notation A o g 0 0 o- all d semantic security, o a

al o all d indistinguishability of encryptions [14], IND. T m a a fa a ak
a om foma o a o pla  x, of p x old o 1ak
a add oal foma o .T oo mo fomall o d ad a ag

a ad a a ga g og of om ag a






h indistinguishability f c-ciphertext

Definition 9. A signcryption scheme is secure if it achieves IND/NEF under adaptive
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example, the SHA-1 hash function outputs 160 bits of message digest. This size is
sufficient for our multicast joining case as the purpose is to authenticate with privacy
a specific and short message of the joining host such as its group-name or user-name.
A general purpose scheme, using the same idea above but with a different technique,

was developed by Pieprzyk and Pointcheval in [123].

9.6 Summary

In this chapter, we have exploited the idea of the Shamir threshold secret sharing
method to develop two variants of digital signatures. The first scheme proposes a
designated verifier signature to allow a specific verifier to verify the signature of a
specific signer. In the context of group communication, this scheme could be used
as a cryptographic protocol for peer authentication to allow a verifier to verify the
authenticity of the host before joining a group.

In the second scheme, we used the same idea to develop a protocol to provide
authenticity, privacy, and integrity all-in-one shot and with less computational cost as
well as communication overhead. The scheme is flexible and is not restricted to any
particular cryptosystem, and it could be designed with any cryptographic cryptosystem
as far as it satisfies security requirement. This primitive is known as “signcryption”.
In the context of group communication, the protocol could be used in cases where the

joining operation requires not only authenticity, but also privacy and integrity.



Chapter 10

Conclusion and Future Directions

Source authentication is a major security service in modern communication networks.
For broadcasting applications such as pay-TV it is an essential requirement for receivers
to receive authentic information. It is always possible for an adversary or enemy to
either inject, intercept, tamper with, or reproduce the original stream of broadcasting.
This is a crucial issue in the contemporary communication services, especially with the
current advances in telecommunication technology on one side, and the new techniques
used by hackers in breaching communication systems on the other.

Given this concern, modern communication systems should be provided with a
sophisticated security infrastructure that is designed to provide complete information
protection. To achieve this requirement in a multicast environment, clients (or users)
of a service must first register themselves with the service provider. Based on successful
registration, service providers can provide authentic and private information. Not only
this, but clients may also need to send data back to the original senders, who become
in this case the receivers. They in turn need their information to be secure.

The goal of this thesis, when it was started in the beginning of year 2000 and during
the early days of the prolific research in multicast security, was to build a complete
authentication system. By ‘complete’, we mean that all communications involved in the
group environment should be authenticated. We always believed that partial secured
systems would not provide enough security to systems. Therefore, our theme in this
thesis was “building an ideal authentication system”.

The methodology we followed was studying multicast technology and the security
of multicast as well as the related communication paradigms. We focused in particular
on source authentication. Authentication in group and multicast communication is
a challenging problem as one needs to consider the efficiency and security which is
either not practical or not provided in the conventional authentication methods. Our
methodology was to study the problem from all directions. We also looked into the

defacto modes of communications to multicast. We first reviewed the literature and
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Authentication Using Secret Sharing Methods

In Chapter 9, we considered ha ir secret sharin techni es possi e a thenti
cation techni e a e in esti ated or other secret sharin techni es s ch as the
a e sche e an ersions o eri a e secret sharin techni es a e

rther e p oited or a thentication p rposes

Authentication o ransit o s

e shed i ht on this ne p ored pro e e proposed the a thentication o transit
ows hierarchica si in and ea e it as an open pro e toe a ate and ana e

its sec rit and e cienc , or de eop a ore e cient protoco than the proposed are

Signcr tion or oncast o unication

In Chapter , we on disc ssed how to a thenticate concast co nication n
interestin pro e wo d etopro ide oth a thenticit and pri ac , which is nown

as si ncr ption, to concast co nication



