Collateral thermal injury during endoscopic skull base surgery from endonasal CO₂ laser and coblation

D CHIN¹,², K SNIDVONGS³,⁴, R SACKS³,⁵,⁶, R J HARVEY¹,³,⁷

¹Department of Otolaryngology, Head, Neck and Skull Base Surgery, St Vincent’s Hospital, Sydney, Australia,
²Department of Otolaryngology, Head and Neck Surgery, Changi General Hospital, Singapore, ³Advanced School of Medicine, Macquarie University Hospital, Sydney, Australia, ⁴Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand, ⁵Faculty of Medicine, The University of Sydney, ⁶Department of Otolaryngology, Head and Neck Surgery, Concord Repatriation General Hospital, Sydney, and ⁷Faculty of Medicine, University of New South Wales, Sydney, Australia

Abstract

Introduction: Effective tissue removal techniques are essential in endoscopic skull base surgery. Improvements in technology permit more accurate application of CO₂ laser and coblation during endonasal procedures. This study assessed the thermal injury patterns associated with fibre CO₂ laser and coblation.

Methods: Fresh frozen cadaveric heads were used. Mucosal removal was performed at the ethmoid roof. Structured lesions were created using either CO₂ laser or coblation. The corresponding thermal injury patterns on dural tissue were assessed and compared between the two groups.

Results: Five cadaveric heads were obtained; five sides received CO₂ laser lesions and five coblation lesions. Forty per cent (n = two sides) of the CO₂ specimens had macroscopic foci of grey-black discolouration on the dural aspect. No macroscopic dural changes were seen in the coblation specimens.

Conclusion: Dural injury was seen following CO₂ laser use despite attempts to avoid it. Both CO₂ laser and coblation have their advantages; however, the lower thermal working power of coblation and superior depth control may make it more suitable for endoscopic endonasal periorbital and peridural surgery.

Key words: Endoscopic Surgical Procedures; Skull Base; Lasers; Injuries

Introduction

Coblation (also known as electrodissociation) and flexible fibre CO₂ laser are novel technologies with potential uses in functional endoscopic sinus surgery (FESS) and endoscopic skull base surgery. Temperature-limited tissue ablation with minimisation of collateral thermal injury has been advocated as the key advantage of coblation.¹ Recent studies on healing of coblation wounds in rabbit and sheep sinus mucosa indicate appropriate mucosal healing after coblation injury.²,³ Importantly, longer duration of coblation application does not result in deeper injury. In tandem with studies on safety, the use of coblation in FESS and endoscopic skull base surgery has been increasing, with consistent reports of low intra-operative blood loss, and one report of shorter operative time in reducing encephalocoeles compared with bipolar cautery.⁴⁻⁷

There are fewer studies on the use of CO₂ laser in the sinonasal cavity, as flexible fibre lasers and handpieces (which facilitate endonasal manoeuvrability, improving ease of delivery) have been introduced only recently.⁸,⁹ However, precise cutting and coagulation have been reported, especially when creating a transsphenoidal window for sellar lesions.⁸

Patterns of thermal injury differ between the two devices. In animal studies of coblation, lesions applied to the lamina papyracea were not associated with any histological changes in the adjacent orbit.²,³ The ethmoid skull base is another site of extremely thin bone at risk of inadvertent intracranial thermal injury. There are currently no reports on associated dural changes following either coblation or CO₂ laser use at the ethmoid skull base.

The aim of this study was to describe the depth of injury resulting from coblation and CO₂ laser use at the ethmoid skull base in fresh cadaveric specimens.

Materials and methods

The study was performed on fresh frozen cadaveric heads. In each specimen side, wide sphenoidotomy,
removal of all ethmoid partitions and Draf 2a frontal sinusotomy was performed so as to obtain an unobstructed view of the entire medial orbital wall and ethmoid roof. Mucosal removal was performed over an area bounded by the anterior ethmoidal artery anteriorly, attachments of the middle and superior turbinates medially, junction of the lamina papyracea and the fovea ethmoidalis laterally, and the plane of the face of the sphenoid posteriorly.

In each cadaveric head, the mucosa removal described above was performed using laser on one side and coblation on the other. While method and side allocation was not randomised, pairing of the mucosa and skull base was performed to minimise the effect of intrinsic differences for each specimen side. The characteristics of the cadavers in each group are shown in Table I.

Each lesion was created using either CO2 laser (Acupulse WaveGuide CO2 Laser; Lumenis, Santa Clara, California, USA) or coblation (Coblator PROCise XP Plasma Wand; Arthorcare, Austin, Texas, USA). Carbon dioxide laser was delivered using the Acupulse WaveGuide laser fibre system (super pulse; repeat mode; 4.0 W; spot size, 320 μm; time on, 0.20 seconds; time off, 0.10 seconds). A power of 4.0 W was chosen as this was the lower end of the power range used at the pituitary sella in Jayarao and colleagues’ report.8 For the Coblator, the standard settings (i.e. ablation, 7; coagulation, 3) were used (Figure 1). The CO2 laser or Coblator was applied within the defined anatomical limits until no further mucosa was observed endoscopically.

For coblation specimens, the ethmoid roof mucosa changed colour to grey-white as coblation was applied with light, brushing strokes. At the end-point of application (i.e. no further change noted), complete mucosal removal was achieved (Figure 1a and 1c).

The CO2 laser fibre delivery system was able to deliver point lesions with submillimetre precision, using the HeNe aiming beam. Each lesion resulted in gradual charring with shrinkage of the tissue, accompanied by a small plume. At the end-point of application, there was no observable change to the remaining layer of char on the ethmoid roof (Figure 1b and 1d).

After the lesions were created, each ethmoid roof was resected by dissecting around the perimeter of the ethmoid skull base, using a combination of cutting endoscopic instruments and a 4 mm diamond burr where required. Dural cuts were made with endoscopic scissors.

High definition digital photographs of the sinus and dural aspects of each dissected specimen side were obtained. The photographs, under ×10 magnification, were presented in a randomised fashion to an assessor (the second author) who was blinded to the dissection technology used. The assessor was asked to determine whether macroscopically visible thermal injury was present or absent.

Histological assessment of the specimens was not performed, as the aim of this study was to ascertain macroscopic changes. Furthermore, any microscopic changes would have been difficult to interpret in a fresh cadaveric specimen.

Results

Ten cadaveric head specimen sides were obtained; five received CO2 laser and five coblation. Both the Coblator PROCise XP and the AcuPulse WaveGuide were easily manoeuvred within the sinonasal cavity under endoscopic vision.

On macroscopic examination, no visible tissue remnants were observed on the inferior surface of any coblation specimen side. However, all five CO2 laser specimens had a thin layer of char tissue on the inferior surface. The dural (superior) surface of all coblation specimen sides appeared normal (Figure 1e), while foci of black discouloration were observed on the dura in two of the five (40 per cent) CO2 laser specimen sides (Figure 1f).

Discussion

Coblation and CO2 fibre laser represent technological innovations with potential applications in FESS and endoscopic skull base surgery. Each offers unique advantages. Coblation technology enables controlled tissue removal within a 40–70°C range, with minimal circumferential and limited deep tissue injury.1 Combined irrigation and suction enables the surgical bed to be kept clear. Additionally, the integrated bipolar diathermy facilitates haemostasis, reducing the need to change instruments. While the shaft of the Coblator PROCise XP wand is malleable, it is 3.9 mm in width and thus substantially larger than the laser delivery fibres. Additionally, the point of dissection is also 3.9 mm wide, compared with the 0.6 mm beam width of the CO2 fibre laser.

Histological specimens from animal studies have demonstrated that coblation of inferior turbinate mucosa results in immediate loss of respiratory epithelium and thermal injury to underlying seromucinous glands; the depth of injury was dependent on

<p>| TABLE I |
| SPECIMEN AND LESION CHARACTERISTICS |</p>
<table>
<thead>
<tr>
<th>Sp no</th>
<th>Sex</th>
<th>Age (y)</th>
<th>Side</th>
<th>Lesion type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>M</td>
<td>73</td>
<td>R</td>
<td>CO2 laser</td>
</tr>
<tr>
<td>2</td>
<td>M</td>
<td>90</td>
<td>L</td>
<td>Coblation</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>63</td>
<td>L</td>
<td>CO2 laser</td>
</tr>
<tr>
<td>4</td>
<td>M</td>
<td>78</td>
<td>L</td>
<td>Coblation</td>
</tr>
<tr>
<td>5</td>
<td>F</td>
<td>92</td>
<td>L</td>
<td>CO2 laser</td>
</tr>
</tbody>
</table>

Sp no = specimen number; y = years; M = male; R = right; L = left; F = female
soft tissue type rather than duration of coblation application. Underlying bone demonstrated reactive, regenerative changes; however, a study of rabbit specimens observed only one case of histological changes beyond the maxillary sinus bony wall, even with prolonged application. Therefore, it is important that the characteristics at each potential site of application are well understood. In the present study of human cadaveric specimens, the macroscopic finding of complete removal of mucosa at the ethmoid roof, along with the lack of dural injury and low working temperature range,
suggest that coblation is ideally suited to, and safe
for, bulky soft tissue removal at the skull base.

- Coblation enables reduced thermal mucosal
 injury and less operative blood loss
- Endonasal fibre CO2 laser enables precise,
 haemostatic dissection
- This study found macroscopic dural injury in
 40 per cent of specimens after ethmoid skull
 base CO2 laser
- No dural injury was seen after coblation
- Coblation may be more suitable for
 periorbital and peridural surgery

The main advantages of the CO2 laser have been listed
as (1) haemostatic dissection of scar tissue, adhesions
and tumour capsules, and (2) the ability to precisely
dissect lesions from the surrounding soft tissue.9
Unlike its non-fibre predecessors, the flexible fibre
system does not require ‘line of sight’ delivery, and
the hand-piece allows the tip to be manipulated like a
straight endoscopic instrument. Because CO2 laser is
absorbed to a large degree by water within cells, it
has a shallow depth of penetration which confers rela-
tive safety, compared with other lasers. Submillimetre
spot sizes enable lesions to be precisely positioned,
minimising circumferential damage around the target.
Multiple parameters can be adjusted to vary perform-
ance characteristics, in order to reduce collateral
thermal injury at the target site. The superpulse mode
used in the present study provides alternating laser
time on and off and allows regular dissipation of
thermal energy between applications. Studies on the
use of flexible CO2 laser in FESS are emerging and
will provide more information on appropriate
applications.

Conclusion
Both coblation and flexible fibre CO2 laser have their
advantages in FESS. However, in the present,

References
1 Chunpaipoj S, Feldman MD, Saunders JC, Thaler ER. A compari-
son of monopolar electrosurgery to a new multipolar electrosurgi-
cal system in a rat model. Laryngoscope 2001;111:213–17
2 Swibel-Rosenthal LH, Benninger MS, Stone CH, Zacharek MA.
Wound healing in the rabbit paranasal sinuses after Coblation:
evaluation for use in endoscopic sinus surgery. Am J Rhinol
Allergy 2009;23:360–3
3 Swibel-Rosenthal LH, Benninger MS, Stone CH, Zacharek MA.
Wound healing in the paranasal sinuses after Coblation, Part II:
evaluation for endoscopic sinus surgery using a sheep model.
Am J Rhinol Allergy 2010;24:464–6
4 Kostrzewa JP, Sunde J, Riley KO, Woodworth BA. Radiofrequency coblation decreases blood loss during endo-
scopic sinonasal and skull base tumor removal. ORL J
Otorhinolaryngol Relat Spec 2010;72:38–43
5 Ruiz JW, Saint-Victor S, Tsessem B, Eloy JA, Anstead A.
Coblation assisted endoscopic juvenile nasopharyngeal angiofi-
6 Syed MI, Mennie J, Williams AT. Early experience of radio fre-
quency coblation in the management of intranasal and sinus
tumors. Laryngoscope 2012;122:436–9
7 Smith N, Riley KO, Woodworth BA. Endoscopic Coblator-
assisted management of encephaloceles. Laryngoscope 2010;
120:2535–5
8 Jayarao M, Devaiah AK, Chin LS. Utility and safety of the flex-
ible-fiber CO2 laser in endoscopic endonasal transphenoidal
9 Agarwal G, Kupferman ME, Holsinger FC, Hanna EY. Sinonasal
and nasopharyngeal applications of the hand-held CO2 laser fiber.
Int Forum Allergy Rhinol 2011;1:109–12

Address for correspondence:
Dr David Chin,
354 Victoria St,
Darlinghurst, NSW,
Australia 2010

Fax: +61 (0)293 609919
E-mail: drdavidchin@gmail.com

Dr D Chin takes responsibility for the integrity of the content of the paper
Competing interests: None declared
Journal of Laryngology and Otology

Title: Journal of Laryngology and Otology

ISSN: 0022-2151

Publisher: Cambridge University Press

Country: United Kingdom

Status: Active

Start Year: 1887

Frequency: Monthly

Language of Text: Text in: English

Refereed: Yes

Abstracted / Indexed: Yes

Serial Type: Journal

Content Type: Academic / Scholarly

Format: Print

Website: http://journals.cambridge.org/action/displayJournal?jid=JLO

Email: j.l.o@btconnect.com

Description: Contains original scientific articles and clinical records in all fields of otology, rhinology and laryngology.

Subject Classifications

Additional Title Details

Title History Details

Publisher & Ordering Details

Price Data

Online Availability

Abstracting & Indexing

Other Availability

Demographics