This is the author version of an article published as:

Access to the published version: http://doi.org/10.1037/a0036969

Copyright: American Psychological Association, 2014. This paper is not the copy of record and may not exactly replicate the authoritative document published in the APA journal. Please do not copy or cite without author's permission. The final article is available, upon publication, at: http://doi.org/10.1037/a0036969
Types of Parental Involvement in CBT with Anxious Youth: A Preliminary Meta-Analysis

April 3, 2014

Authorship:
*Katharina Manassis1,2, MD; *Trevor Changgun Lee2, MSc; Kathryn Bennett3, PhD; Xiu Yan Zhao1, MSc; Sandra Mendelowitz1,2, PhD; Stephanie Duda3, BSc; Michael Saini, PhD2; Pamela Wilansky2,4, PhD; Susan Baer5, MD; Paula Barrett6, PhD; Denise Bodden7, PhD; Vanessa E. Cobham8, PhD; Mark R. Dadds9, PhD; Ellen Flannery-Schroeder10, PhD; Golda Ginsburg11, PhD; David Heyne12, PhD; Jennifer L. Hudson13, PhD; Philip C. Kendall14, PhD; Juliette Liber12, PhD; Carrie Masia Warner15, PhD; Maaik H. Nauta16, PhD; Ronald M. Rapee13, PhD; Wendy Silverman17, PhD; Lynne Siqueland18, PhD; Susan H. Spence19, PhD; Elisabeth Utens20, PhD; and Jeffrey J. Wood21, PhD

* Authors with equal contributions

Authors’ Affiliations: 1Hospital for Sick Children (Department of Psychiatry for Drs. Manassis & Mendelowitz and Biostatistics, Design, and Analysis Unit for Ms. Zhao), ; 2University of Toronto; 3McMaster University; 4Ontario Shores Centre for Mental Health Sciences; 5University of British Columbia; 6Pathways Health and Research Centre; 7University of Utrecht; 8University of Queensland; 9University of New South Wales; 10University of Rhode Island; 11Johns Hopkins University School of Medicine; 12Leiden University; 13Macquarie University; 14Temple University; 15William Paterson University & New York University Langone Medical Center; 16University of Groningen; 17Yale University; 18Children’s Center for OCD and Anxiety, Pennsylvania; 19Griffith University; 20Erasmus Medical Center Sophia-Children’s Hospital; 21University of California, Los Angeles.

Author Note: Dr. Manassis receives royalties for mental health books on cognitive behavioral therapy (Routledge Publishing) and on anxious children (Barron’s Educational Series, Inc.). Dr. Kendall receives royalties from sales of treatment materials for anxiety in youth. Contact: Dr. K. Manassis, Dept. of Psychiatry, Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada; Tel: 416-813-7464; email: katharina.manassis@sickkids.ca.
Abstract

Objective: Meta-analytic studies have not confirmed that involving parents in cognitive behavior therapy (CBT) for anxious children is therapeutically beneficial. There is also great heterogeneity in the type of parental involvement included. We investigated parental involvement focused on contingency management (CM) and transfer of control (TC) as a potential outcome moderator using a meta-analysis with individual patient data. **Method:** Investigators of randomized controlled trials (RCTs) of CBT for anxious children, identified systematically, were invited to submit their data. Conditions in each RCT were coded based on type of parental involvement in CBT (i.e., low involvement, active involvement without emphasis on CM or TC, active involvement with emphasis on CM or TC). Treatment outcomes were compared using a one-stage meta-analysis. **Results:** All cases involved in active treatment (894 of 1618) were included for subgroup analyses. Across all CBT groups, means of clinical severity, anxiety, and internalizing symptoms significantly decreased post-treatment and were comparable across groups. The group without emphasis on CM or TC showed a lower proportion with post-treatment anxiety diagnoses than the low-involvement group. Between post-treatment and 1-year follow-up, the proportion with anxiety diagnoses significantly decreased in CBT with active parental involvement with emphasis on CM or TC whereas treatment gains were merely maintained in the other two groups. **Conclusions:** CBT for anxious children is an effective treatment with or without active parental involvement. However, CBT with active parental involvement emphasizing CM or TC may support long-term maintenance of treatment gains. Results should be replicated as additional RCTs are published.

Keywords: anxiety disorders; cognitive behavior therapy; anxious children; parental involvement
Involving parents in cognitive behavior therapy (CBT) for anxious children is a common practice with a number of potential benefits. First, parental involvement may facilitate generalization of skills to ‘real world’ settings, particularly when parents are involved in facilitating children’s exposures to anxious situations outside the therapist’s office (Barmish & Kendall, 2005). Exposure is considered a key mechanism of change in anxiety-focused CBT, as is promotes desensitization to anxious stimuli (reviewed in Dubord, 2011). Silverman and Kurtines (1999) described the generalization process as a ‘transfer of control’ (TC) from therapist to parent in which parents are taught to use contingency management (CM) to encourage children’s exposures to anxiety-provoking situations. Although CM is based on general principles of operant conditioning (rather than any particular theory of anxiety) and was originally developed and studied with children that had externalizing problems (Kazdin, 1997), it is applicable to anxious children when its focus is to encourage and reward ‘brave’ behavior (i.e., to facilitate exposure and therefore desensitization). Second, parental involvement may aid the continued use of skills learned in CBT beyond the end of therapy (Ginsburg, Silverman, & Kurtines, 1995). For example, after being involved in their child’s CBT parents can often model healthy coping, remind their children to practice newly acquired coping skills, and continue to encourage and reward ‘brave’ behavior through CM. Finally, involving parents in treatment may address parent-related obstacles to treatment success. Such obstacles may include parental anxiety which is often associated with anxiogenic parenting styles (Murray, Cooper, Creswell, Schofield, & Sack, 2007), parental frustration with the child (Crawford & Manassis, 2001), and parents’ tendency to inadvertently encourage avoidant coping (Barrett, Rapee, Dadds, & Ryan, 1996a).
It is therefore surprising that the empirical evidence favoring parental involvement in CBT with anxious children is sparse. When reviewing nine trials which compared anxiety-focused CBT with an added family component (FCBT) and anxiety-focused CBT (CCBT), Cresswell and Cartwright-Hatton (2007) concluded that FCBT was superior to no treatment, showed good maintenance of treatment effects, and was probably more effective than CCBT for children of anxious parents. However, the need for large, well-designed studies was also identified. An earlier review of nine randomized clinical trials of CBT with anxious youth that included parents (Barmish & Kendall, 2005) concluded that neither FCBT nor CCBT could be deemed superior based on existing evidence, and additional comparative research was needed.

Since then, four meta-analyses have failed to find differences in efficacy between CBT with and without parental involvement (In-Albon & Schneider, 2007; Reynolds, Wilson, Austin, & Hooper, 2012; Silverman, Pina, & Viswesvaran, 2008; Spielmans, Pasek, & McFall, 2007). Of note, the effect of parental involvement was not the primary research question in any of these meta-analyses and most did not distinguish between children meeting diagnostic criteria and those having elevated symptoms only. In-Albon & Schneider compared 17 child-focused treatment arms and 14 family-focused treatment arms (defined as 4 or more sessions that included parents) and found similar effect sizes and similar percentages of patients recovered. Reynolds and colleagues (2012) analyzed results from 55 trials: 20 treatment arms with no parental involvement, 11 with ‘minimal involvement’ (defined as a small number of sessions), 11 with ‘some involvement’ (defined as parents involved routinely in selected sessions) and 18 with ‘significant involvement’ (defined as parents involved in all or the majority of treatment sessions). All four conditions had effect sizes that were medium and significant. Silverman and colleagues (2008) examined 32 waitlist controlled studies that reported diagnostic remission,
anxiety symptom reduction, and reduction of other symptoms (7 treatment arms including parents and 12 not for remission reports; 10 treatment arms including parents and 25 not for anxiety symptoms; 6 treatment arms including parents and 12 not for other symptoms). They failed to find differences in remission rates or in effect sizes for anxiety symptom reduction, but found favorable effects for parental involvement in the reduction of other symptoms. Spielmans and colleagues’ (2007) meta-analysis included 35 studies, and compared ‘full CBT’ (defined as ‘nearly all involved the addition of some sort of parental component’) versus ‘CBT only’. Effect sizes were similar for these two conditions.

At first glance, it would therefore appear that anxiety-focused CBT should focus exclusively on the child, with the parents’ role limited to escorting the child to and from therapy sessions. A closer look, however, illustrates the risks of drawing such a facile conclusion. First, each review or meta-analysis used different definitions of parental involvement, making them difficult to compare. Second, involvement was generally classified quantitatively (e.g., by number of sessions) potentially obscuring differences based on qualitative factors. Finally, all reviewers acknowledged heterogeneity in the type of parental involvement provided in the primary studies. For instance, in some studies parents were taught to change the child’s behavior through contingency management (CM) and gradual transfer of control from therapist to parent occurred (TC), whereas in other studies parents became co-clients and parental problems (such as parental anxiety) were addressed with little emphasis on CM or TC (Breinholst, Esbjorna, Reinholdt-Dunnea, & Stallard, 2012). Improving family communication (e.g., Shortt, Barrett, & Fox, 2001), reducing parental intrusiveness and increasing parental autonomy-granting (Wood, Piacentini, Southam-Gerow, Chu, & Sigman, 2006), and addressing parental thoughts and feelings about the child (Nauta, Scholing, Emmelkamp, & Minderaa, 2003) were targets of
intervention in other parent programs. All of the above suggest that further investigation of
different types of parental involvement may be warranted.

Although there is a lack of evidence about processes of change when including parents in
CBT, several authors have suggested that TC from therapist to parent contributes to
improvement, and this is more likely to occur with parental involvement that includes CM
(Khanna & Kendall, 2009; Silverman & Kurtines, 1999). Presumably, parents who are taught to
use CM to encourage children to face feared situations are more likely to use this tool to assume
control of their anxious child’s continued progress than those who are not. This idea suggests a
potential benefit to investigating parental involvement with a focus on TC or CM as a potential
moderator of outcome.

In addition to type of parental involvement, there is a dearth of meta-analyses examining
the relationship between parental involvement and long-term maintenance of gains. This absence
may be due to the scarcity of randomized control trials (RCTs) that address this link. However,
considering the potentially important role of parents in maintaining CBT gains, a meta-analysis
of available data is warranted.

Using individual patient data collected from randomized controlled trials assembled for a
previous investigation of treatment moderators (Bennett et al., 2013), we explore the novel
question of whether active parental involvement in CBT, with or without emphasis on changing
the child’s behavior via CM or TC, is superior to child-focused CBT with limited parental
involvement. We hypothesize that active parental involvement with high emphasis on CM or TC
is most effective at both post-treatment and 1-year follow-up. Our method provides a unique
opportunity to conduct such subgroup analyses, and to pool limited data on maintenance of
treatment gains.
Method

Trial Search Method

Individual patient data were collected as part of a larger study that examined age effects on treatment outcomes of CBT for anxious children (see Bennett et al., 2013 for more detailed methods).

In this larger study, eligible RCTs were identified guided by the Cochrane Handbook for Systematic Reviews of Interventions (Higgins & Green, 2011) and PRISMA (preferred reporting items for systematic reviews and meta-analyses) for transparent reporting of systematic reviews (Moher, Liberati, Tetzlaff, Altman, & The PRISMA Group, 2009) methods. The search strategy proceeded as follows: i) seeking existing systematic reviews and meta-analyses of the efficacy of CBT in child and adolescent anxiety in electronic databases relevant to psychology and psychiatry for the period of 1990-2011 (OVID-Medline, OVID- Embase, OVID- Cochrane Central, OVID-PsycINFO, and EBSCO CINAHL). The search used the key words anxiety disorder/anxiety (with field limits dependent on specific data base), cognitive therapy/CBT, pediatric/paediatric or child or teen or adolescent or youth. Then, studies were narrowed to randomized controlled trials published in the English language during the years of interest (a replicable strategy created by an experienced research librarian available from the author); ii) reference lists of the 8 published systematic reviews/meta-analyses identified were hand searched to identify RCTs; these existing reviews included potentially eligible primary RCTs published from 1966 to 2005; iii) additional RCTs published from 2005 onwards were then identified by searching the same electronic databases (key words and search strategy available from the author); iv) reference lists of all eligible RCTs identified were hand-searched; and v) all collaborating authors reviewed the list and noted omissions. Nevertheless, even with this detailed
search strategy the possibility of publication bias exists (i.e., unpublished studies that we were unable to access).

Senior investigators of all RCTs identified that met the following eligibility criteria were then invited to contribute their individual patient data using a common template (see Bennett et al., 2013): i) RCT comparing CBT to wait-list or attention controls; ii) participants 6 to 18 years of age; iii) pre-treatment diagnosis of anxiety disorder other than PTSD or OCD (as these disorders require substantially different CBT protocols and are no longer considered anxiety disorders in DSM5 [American Psychiatric Association, 2013]); iv) outcome measures indicating presence/absence of anxiety disorder, severity of anxiety diagnosis, and self/parent-report measures of children’s anxiety symptoms. Contributing investigators were contacted if necessary to clarify the data in their studies or the nature of their interventions. Data were obtained from 18 of the 23 trials that met eligibility criteria. For the remaining 5 trials, either the study data were no longer available or the investigators declined our request to participate. Four of the 18 included trials were limited to participants with Social Phobia; the other 14 included multiple anxiety diagnoses.

Groups Compared in the Current Study

(Figure 1 about here)

Data from all trials included in the original study was utilized in this study. Of 1618 participants in the original data set, 724 patients were excluded as they were in the waitlist/active control groups and 894 patients in CBT groups were included for analyses (see Figure 1). Participants in waitlist/active control groups were excluded because efficacy of CBT in comparison with these groups has been previously reported in a comprehensive meta-analysis (James, James, Cowdrey, Soler, & Choke, 2013). Therefore, we limited our comparison groups
to: CBT with limited parental involvement (Group 1), CBT with active parental involvement with low emphasis on CM or TC (Group 2), and CBT with active parental involvement with high emphasis on CM or TC (Group 3). We defined limited parental involvement (Group 1) as parental involvement in less than 50% of sessions or in only a short portion of each session (i.e. parental contact time with therapist <50% that of the child). We acknowledge that therapists in this condition likely had some flexibility with respect to parent contact in a given case, so parental contact may have been higher in some cases. We classified studies with parental involvement in greater than 50% of sessions and emphasis on contingency management or transfer of control techniques as Group 3. The remaining studies comprised Group 2. Interventions in these Group 2 studies emphasized addressing parental anxiety, anxious modeling, dysfunctional parental beliefs or communication in relation to the child, family conflict, or other aspects of parental and family functioning that did not relate directly to managing the child’s anxious behaviors. Some Group 2 studies did include CM and TC among other treatment elements. Contributing investigators were contacted to clarify interventions for Groups 2 and 3 when necessary. Reliability of coding was checked by having an investigator experienced in this field but blind to the study results independently re-code all groups based on descriptions in the original papers. There was agreement on all but one study, in which there was substantial parental involvement but the authors did not explicitly describe the nature of that involvement with respect to CM and TC in their paper (kappa = 0.91). Coding in this case was based on additional information from the contributing investigators.

Key Variables Measured at Baseline, Post-Treatment, and Follow-Up

Clinical severity of anxiety diagnosis. The clinical severity rating score (0 to 8; based on symptom severity and interference with activities) in the Anxiety Disorder Interview
Schedule (ADIS; Silverman & Albano, 1997) was recorded. The ADIS is a semi-structured diagnostic interview that is the most widely used in research pertaining to anxiety disorders in children (Schniering, Hudson, & Rapee, 2000).

Presence of anxiety diagnosis (remission rates). Presence or absence of an anxiety diagnosis was determined, also using the ADIS. An anxiety diagnosis is deemed to be present on this interview if the clinical severity rating score is 4 or above for a given disorder. Analyses were based on the primary anxiety diagnosis, as this data was most consistently available.

Internalizing symptoms and anxiety symptoms (for sensitivity analyses). The two standardized measures used most often in the included RCT’s were the Child Behavior Checklist (CBCL; parent report; Achenbach, 1991) and the Revised Children’s Manifest Anxiety Scale (RCMAS; child report; Reynolds & Richmond, 1978). Changes in the CBCL internalizing problems T-scores and in the RCMAS total anxiety T-scores between pre- and post-treatment were measured. Pre-treatment CBCL and RCMAS T-scores were included as covariates when these variables were used as outcome measures. These variables were not included in the 1-year follow-up analysis due to missing data.

Statistical Methods

Descriptive statistics were used to summarize the characteristics of participants from 18 studies. For example, continuous variables were described using means and standard deviations (see Table 2). Frequency and cross tabulate tables were used to describe discrete variables. Prior to the analysis, time trend plots of the mean values on the 4 outcomes were produced for each group in order to visualize group differences from baseline to post to 12 month follow-up.

A one-stage approach of individual participant data (IPD) meta-analyses was performed. Hierarchical multiple linear and non-linear regression models were constructed for continuous
outcomes of severity ratings on ADIS, total T-score on RCMAS, internalizing score on CBCL, and the binary outcome of anxiety diagnosis (presence/absence) separately. Restricted maximum likelihood (REML) and residual pseudo-likelihood (Residual PL) methodologies were used accordingly. Time (level 1) was nested within individuals, and individuals (level 2) were nested within studies (level 3). Between study differences were assessed through two models: i) random intercept model at the study level; ii) random-effects model where group and study interaction effect was allowed to vary between studies. Within subject correlations were accounted for by specifying an appropriate covariance structure in the residual error.

A set of covariate effects was assessed one at a time by conducting a series of models that evaluate group effect, time effect, and group by time interaction effect in the multilevel model. The latter effect would indicate differences in group trajectories over time, consistent with our hypothesis. Final models were chosen based on the lowest Akaike information criterion (AIC) for continuous variables, and the ratio of the generalized chi-square statistics and its degrees of freedom for the dichotomous outcome variable. Autoregressive 1 and compound symmetry covariance structures were assumed for R-side and G-side modeling respectively. Post-hoc tests were used to examine differences between groups for each time point, to test our initial hypothesis. Significance was considered at $p < 0.05$; multiple comparisons were adjusted using the Tukey method. All analyses were conducted using SAS v. 9.3 with PROC MIXED and PROC GLIMMIX. The nature of these analyses takes into account a lack of 1-year follow-up data for some studies and subjects, ensuring that studies with larger/smaller effect sizes post-treatment do not bias the 1-year follow-up results.

Results

Pre-treatment vs. Post-treatment
Proportion with anxiety diagnosis present (remission analysis). Covariate analyses showed that gender, age, and duration of CBT exposure (in minutes) were not significant outcome predictors in the pre-treatment versus post-treatment analysis, so no covariates were included in the model.

(Figure 2 about here)

Between group difference in the proportion with anxiety diagnosis present was significant, $F(2, 899) = 3.80, p = 0.02$, and time effect on remission was also significant across groups, $F(1, 818) = 318.16, p < .0001$. Post-hoc analyses, adjusted by the Tukey-Kramer procedure, showed that the group difference in the proportion with anxiety diagnosis present was only significant between Group 1 and Group 2, Group 1: mean = 0.43 (i.e., 57% remission), SE = 0.02, Group 2: mean = 0.50 (i.e., 50% remission), SE = 0.04. In all groups, the presence of anxiety diagnosis decreased significantly at post-treatment.

Clinical severity of anxiety diagnosis. Time effect was highly significant, $F(1, 860) = 1313.69, p < .0001$, but between group difference in means was not significant, $F(2, 20.5) = 0.87, p = 0.43$. A post-hoc analysis showed that clinical severity ratings on ADIS significantly decreased in all three CBT groups at post-treatment, estimate = -3.44, SE = 0.10, $t(860) = -36.24, p < .0001$.

Anxiety symptoms and internalizing symptoms (sensitivity analyses). Between group differences were not found for anxiety symptoms at post-treatment ($F(2, 9.33) = 0.92, p = 0.43$), but a significant effect for time was found ($F(1, 383) = 102.65, p < .0001$). A post-hoc analysis using the Tukey-Kramer procedure revealed a significant decrease in anxiety symptoms across groups, mean difference = -7.30, SE = 0.72, $t(383) = -10.13, p < .0001$.

For internalizing symptoms, the group by time interaction was just significant, $F (2, 538) = 3.21, p = 0.04$. However, group comparisons showed that only time effect was significant in all three groups such that internalizing symptoms significantly decreased at post-treatment, Group 1: mean difference = -8.20, SE = 0.58, $t (534) = -14.25$, $p < .0001$; Group 2: mean difference = -7.97, SE = 1.01, $t (523) = -7.83$, $p < .0001$; Group 3: mean difference = -10.47, SE = 0.77, $t (560) = -13.57$, $p < .0001$.

Post-treatment vs. 1-year Follow-up (Maintenance of Gains; Remission Analysis Only).

Eight studies provided 1-year follow-up data (see Table 1 for studies; Figure 1 for numbers). In the maintenance-of-gains analysis comorbid depression (estimated odds ratio = 0.47, 95%Cl = 0.24-0.92, $p = 0.03$) was a significant predictor of the proportion with anxiety diagnosis present. Consequently, this variable was added as a covariate in the model.

Between the time points of post-treatment and 1-year follow-up, there was a significant group by time interaction effect, $F (2, 357) = 11.69$, $p < .0001$. Plots revealed that the proportion with anxiety diagnosis present decreased significantly in Group 3 relative to the other two groups between post-treatment and 1-year follow-up (Figure 2). Post-hoc comparisons of time effects, adjusted by the Tukey-Kramer procedure, showed that the proportion with anxiety diagnosis present was significantly lower in Group 3 at 1-year follow-up than at post-treatment (proportion with anxiety diagnosis present decreased by 0.28, post-treatment mean=0.46, SE = 0.03, 1-year follow-up mean=0.18 SE=-0.05, $p < 0.001$). On the other hand, the proportion did not change significantly between post-treatment and 1-year follow-up in either Group 1 (difference = 0.004, post-treatment mean=0.43, 1-year follow-up mean=0.43 SE=0.04, $p = 0.62$) or Group 2 (difference = 0.06, post-treatment mean=0.50, 1-year follow-up mean=0.45 SE=0.05, $p = 0.94$). Chi square analysis comparing attrition rates among the three groups was non-significant.
Post hoc, additional analyses were done to examine age and comorbid externalizing disorders as potential confounding factors in our analyses. Age effects were examined by adding age into the model with or without an age X treatment interaction, separately for each outcome. We did not find any significant effects at the 0.05 level. The effect of having a comorbid externalizing diagnosis on the ADIS (Attention Deficit Hyperactivity Disorder, Oppositional Defiant Disorder, or Conduct Disorder) was examined in the same manner and no significant effects were found at the 0.05 level (note: we had insufficient questionnaire data to examine the effect of externalizing symptoms).

Discussion

Although limited by the non-random nature of the comparison groups, the present study was able to use individual patient data to examine the potential link between type of parental involvement and both short- and long-term effects of anxiety-focused CBT. The finding from previous meta-analyses, that CBT programs with and without active parental involvement show comparable efficacy at post-treatment, was replicated for most variables measured (In-Albon & Schneider, 2007; Reynolds et al., 2012; Silverman et al., 2008; Spielmans et al., 2007) despite our novel attempt to distinguish between different types of parental involvement. Contrary to our first hypothesis, active parental involvement, regardless of type, was not associated with differential changes in clinical severity, anxiety symptoms, and internalizing symptoms between pre-treatment and post-treatment compared to child-focused CBT with limited parental involvement.

However, active parental involvement in CBT without emphasis on CM or TC showed a lower remission rate than child-focused CBT with limited parental involvement. In contrast, no
significant difference was found either between the two active parental involvement groups or between active parental involvement with emphasis on CM or TC and CBT with limited parental involvement. The latter finding is intriguing, as it could represent a) a more intensive therapeutic focus on the child when parents are not also being trained in child management techniques; b) therapists’ flexibility to use clinical judgment regarding parent contact in the ‘limited involvement’ condition, with good effect; c) parents seeking out child management resources independently in the ‘limited involvement’ condition; or d) other phenomena related to therapeutic change in child CBT that merit further study. Such phenomena could be studied by measuring specific parental attitudes or behaviors to ascertain whether or not these change with intervention, and if so whether or not they moderate or mediate changes in children’s anxiety.

Consistent with our second hypothesis and with the conclusions of Cresswell and Cartwright-Hatton (2007), our remission analysis at 1-year follow-up showed that active parental involvement in CBT with emphasis on CM or TC was superior to (1) CBT with parental involvement without emphasis on these components, and (2) CBT without extensive parental involvement. Attrition rates did not differ significantly between groups, suggesting that these did not account for this finding. Interestingly, the rate of remission in the high CM group continued to improve over time, whereas treatment gains were merely maintained in the other two groups. Perhaps parents’ ability to coach their children in continued use of CBT strategies resulted in further therapeutic gains over time in the high CM group. Although we were not able to corroborate this finding using sensitivity analyses due to limited RCMAS and CBCL follow-up data, it provides initial support for the idea that type of parental involvement may moderate long-term CBT outcomes. If replicated, this finding would suggest that the additional time and resources required to train parents in CM and to transfer control to them may be justified in the
long run, as this practice may enhance long-term treatment efficacy and thus potentially reduce the need for future mental health services.

Unlike Barrett and colleagues (1996b) who found parental involvement effects that were more salient in younger children than older children, we did not find an interaction between the effect of parental involvement and age. Similarly, the presence or absence of externalizing comorbidity did not interact with treatment condition, so parental involvement did not appear to affect externalizing diagnoses. This result is contrary to the meta-analysis of Silverman and colleagues (2008) who found that parental involvement reduced non-anxiety symptoms, and is also surprising in that CM in particular was originally developed for the management of externalizing behaviors (Kazdin, 1997). It is possible, however, that a more sensitive measure of externalizing symptoms (other than diagnosis) would have yielded a different result.

Limitations of this work pertain to study exclusion, heterogeneity of included studies, and inability to pursue certain analyses with the data available. First, publication bias is a general problem in the field that may have affected study inclusion. For example, trials that can demonstrate significant group differences are more likely to be published than trials that cannot, potentially biasing analyses that are based on published trials alone. There may have been some further bias in the studies included in this particular paper. The most common reason for eligible trials to be excluded was ‘data no longer available’, favoring inclusion of data sets that had been regularly maintained over time (i.e., those from very well-established/well-organized research groups). Also, inclusion criteria for the original study eliminated studies that had usual care controls only (i.e., no waitlist or attention controls), potentially excluding an important cohort from the present analysis.
Second, findings were likely affected by the diversity of studies included and the nonrandom nature of the assignment of subjects to comparison groups. For example, the estimation of group differences may have been affected by the fact that not all comparison conditions were included in all studies. Further, differences in patient characteristics (e.g., some trials limited to participants with Social Phobia, others including participants with multiple diagnoses), method of administration, and geographic locations among studies may have caused heterogeneity in our analyses. We did not have sufficient power to examine each of these differences separately. Lastly, despite our efforts to examine potential confounding factors, there is a risk of group differences relating to such factors in any non-random comparison such as this one.

Third, certain potentially important analyses could not be conducted. For example, including the baseline level of parental anxiety as a covariate would have been beneficial as a previous review found parental involvement to be particularly beneficial when parents are anxious themselves (Cresswell & Cartwright-Hatton, 2007); however, data on this factor was inconsistently available. Also, a lack of RCTs comparing different types of parental involvement in relation to treatment effects resulted in too little power to conduct a two-stage approach in meta-analysis, which might have been more reliable (Bowden, Tierney, Simmonds, Copas, & Higgins, 2011). However, a recent study suggests that a one-stage approach may be the most appropriate for subgroup analyses where some trials are missing participants in specified subgroup categories, and a two-stage method could lack statistical power or result in aggregation bias (Stewart et al., 2012). Lastly, the follow-up interval in our study is limited to one year, and longer follow-up data should be examined in the future.
In conclusion, our study is the first to examine the effect of different types of parental involvement, as defined by level of intensity and behavioral techniques, on post-treatment and 1-year follow-up measures of anxiety diagnoses and symptoms. Our results suggest that different types of parental involvement may have an important effect on the maintenance of therapeutic gains in children and adolescents with anxiety disorders. Further investigation is warranted in rigorously designed RCTs. These trials should address both the overall question of what constitutes the most effective type of parental involvement as well as parental characteristics that may moderate or mediate the achievement of desired therapeutic gains.
References

Table 1: Characteristics of participants from each trial included in analyses
<table>
<thead>
<tr>
<th>Center</th>
<th>Type of Parental Involvement</th>
<th># of Participants Included in Analysis</th>
<th>Total CBT Time (Minutes)</th>
<th>Group vs. Individual Treatment</th>
<th>Rounded Age Range</th>
<th>% Male</th>
<th>% Comorbid Depression</th>
<th>Setting</th>
<th>Availability of 1-yr Follow-up Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baer & Garland (2005)</td>
<td>1</td>
<td>6 (0.66%)</td>
<td>1080</td>
<td>Group</td>
<td>13-16</td>
<td>50.0</td>
<td>0.0</td>
<td>√</td>
<td>No</td>
</tr>
<tr>
<td>Barrett et al. (1996b)</td>
<td>1 (n=28), 3 (n=25)</td>
<td>53 (5.84%)</td>
<td>840</td>
<td>Individual</td>
<td>6-14</td>
<td>60.4</td>
<td>N/A</td>
<td>√</td>
<td>Yes</td>
</tr>
<tr>
<td>Beidel et al. (2000 & 2005)</td>
<td>1</td>
<td>30 (3.31%)</td>
<td>1689</td>
<td>Group</td>
<td>8-13</td>
<td>33.3</td>
<td>0.0</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Bodden et al. (2008)</td>
<td>1 (n=64), 2 (n=64)</td>
<td>128 (14.11%)</td>
<td>975</td>
<td>Individual</td>
<td>8-17</td>
<td>41.4</td>
<td>6.3</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Dadds et al. (1997 & 1999)</td>
<td>1</td>
<td>61 (6.73%)</td>
<td>927</td>
<td>Group</td>
<td>7-13</td>
<td>26.2</td>
<td>0.0</td>
<td>√</td>
<td>Yes</td>
</tr>
<tr>
<td>Flannery-Schroeder & Kendall (2000)</td>
<td>1</td>
<td>22 (2.43%)</td>
<td>1325 (average)</td>
<td>Both</td>
<td>8-14</td>
<td>50.0</td>
<td>0.0</td>
<td>√</td>
<td>No</td>
</tr>
<tr>
<td>Ginsburg & Drake (2002)</td>
<td>1</td>
<td>4 (0.44%)</td>
<td>450</td>
<td>Group</td>
<td>15-18</td>
<td>0.0</td>
<td>0.0</td>
<td>√</td>
<td>No</td>
</tr>
<tr>
<td>Hudson et al. (2009)</td>
<td>3</td>
<td>60 (6.62%)</td>
<td>1200</td>
<td>Group</td>
<td>6-16</td>
<td>63.3</td>
<td>0.0</td>
<td>√</td>
<td>No</td>
</tr>
<tr>
<td>Kendall et al. (2008)</td>
<td>1 (n=55), 2 (n=56)</td>
<td>111 (12.24%)</td>
<td>960</td>
<td>Individual</td>
<td>7-14</td>
<td>57.7</td>
<td>6.3</td>
<td>√</td>
<td>Yes</td>
</tr>
<tr>
<td>Kendall et al. (1997)</td>
<td>1</td>
<td>71 (7.83%)</td>
<td>1089</td>
<td>Individual</td>
<td>9-14</td>
<td>63.4</td>
<td>1.4</td>
<td>√</td>
<td>Yes</td>
</tr>
<tr>
<td>Kendall (1994)</td>
<td>1</td>
<td>29 (3.20%)</td>
<td>944</td>
<td>Individual</td>
<td>9-14</td>
<td>58.6</td>
<td>11.1</td>
<td>√</td>
<td>Yes</td>
</tr>
<tr>
<td>Masia Warner et al. (2007)</td>
<td>1</td>
<td>19 (2.09%)</td>
<td>498</td>
<td>Group</td>
<td>14-16</td>
<td>15.8</td>
<td>0.0</td>
<td>√</td>
<td>No</td>
</tr>
<tr>
<td>Masia Warner et al. (2005)</td>
<td>1</td>
<td>21 (2.32%)</td>
<td>570</td>
<td>Group</td>
<td>14-16</td>
<td>28.6</td>
<td>0.0</td>
<td>√</td>
<td>No</td>
</tr>
<tr>
<td>Nauta et al. (2003)</td>
<td>1 (n=37), 2 (n=39)</td>
<td>76 (8.38%)</td>
<td>1(750), 2(1100) (average)</td>
<td>Individual</td>
<td>7-16</td>
<td>53.9</td>
<td>10.5</td>
<td>√</td>
<td>Yes</td>
</tr>
<tr>
<td>Rapee et al. (2006)</td>
<td>3</td>
<td>90 (9.92%)</td>
<td>1080</td>
<td>Group</td>
<td>6-15</td>
<td>46.7</td>
<td>4.4</td>
<td>√</td>
<td>No</td>
</tr>
<tr>
<td>Silverman et al. (1999a)</td>
<td>3</td>
<td>37 (4.08%)</td>
<td>1140</td>
<td>Group</td>
<td>6-18</td>
<td>48.6</td>
<td>10.8</td>
<td>√</td>
<td>Yes</td>
</tr>
<tr>
<td>Silverman et al. (1999b)</td>
<td>3</td>
<td>40 (4.41%)</td>
<td>800</td>
<td>Individual</td>
<td>6-16</td>
<td>47.5</td>
<td>5.0</td>
<td>√</td>
<td>No</td>
</tr>
<tr>
<td>Spence et al. (2006)</td>
<td>3</td>
<td>49 (5.40%)</td>
<td>960</td>
<td>Group</td>
<td>7-14</td>
<td>59.2</td>
<td>0.0</td>
<td>√</td>
<td>Yes</td>
</tr>
</tbody>
</table>

- Type of parental involvement: 1 = low parental involvement, 2 = active parental involvement with low emphasis on CM & TC, 3 = active parental involvement with high emphasis on CM & TC; § = studies limited to participants with Social Phobia.
Table 2: Means and Standard Deviations for Continuous Measures by Group by Time Point

<table>
<thead>
<tr>
<th>Measure</th>
<th>Baseline: Group 1</th>
<th>Baseline: Group 2</th>
<th>Baseline: Group 3</th>
<th>Post-CBT Group 1</th>
<th>Post-CBT Group 2</th>
<th>Post-CBT Group 3</th>
<th>Follow-up Group 1</th>
<th>Follow-up Group 2</th>
<th>Follow-up Group 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>RCMAS (t-scores)</td>
<td>52.84 (10.74)</td>
<td>51.20 (11.26)</td>
<td>50.60 (10.56)</td>
<td>44.36 (11.62)</td>
<td>45.82 (13.26)</td>
<td>42.13 (10.46)</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>CBCL (t-scores)</td>
<td>67.85 (9.56)</td>
<td>70.01 (9.17)</td>
<td>69.45 (9.35)</td>
<td>59.66 (10.23)</td>
<td>61.93 (9.70)</td>
<td>59.01 (9.82)</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>ADIS severity ratings</td>
<td>5.89 (1.71)</td>
<td>6.30 (1.08)</td>
<td>6.45 (1.14)</td>
<td>2.48 (2.64)</td>
<td>2.92 (2.71)</td>
<td>2.80 (2.35)</td>
<td>2.76 (2.17)</td>
<td>3.40 (2.56)</td>
<td>2.46 (2.05)</td>
</tr>
</tbody>
</table>

RCMAS = Revised Children’s Manifest Anxiety Scale; CBCL = Child Behavior Checklist, Internalizing Score; ADIS = Anxiety Disorders Interview Schedule
Figure 1: Flow of Participants through Pre-, Post- and Follow-Up Assessments

Assessed for eligibility (n = 1618)

Enrollment (n = 894)

Excluded (total n = 724) because they were in control groups or missing post-treatment data

Assignment

Group 1: Limited parental involvement

Group 2: Active parental involvement with low emphasis on TC/CM

Group 3: Active parental involvement with high emphasis on TC/CM

Post-treatment remission analysis

Analyzed (n=435)

Follow-up offered (n=269)
Analyzed (n=212)
Declined follow-up (n=57)

1-year follow-up remission analysis

Follow-up offered (n=95)
Analyzed (n=84)
Declined follow-up (n=11)

Follow-up offered (n=110)
Analyzed (n=79)
Declined follow-up (n=31)
Figure 2:

Presence of Anxiety Diagnosis at Pre-, Post-, & 1-year Follow-up

![Graph showing the proportion of anxiety diagnosis over time with different parent involvement levels.](image)

Parent Involvement
- **Low**
- **Active+Low CM/TC**
- **Active+High CM/TC**