Antarctic Microfungi as a Potential Bioresource

John Ronald Bradner

A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy

Department of Biological Sciences, Macquarie University
Sydney, New South Wales, Australia

and

Macquarie University Biotechnology Research Institute
Sydney, New South Wales, Australia

July 2003
Declaration

The research presented in this thesis is original work performed between March 1997 and March 2003 by the author. This research has not been submitted to any other university or institution as part of the requirements for any higher degree or course.

John Ronald Bradner
Abstract

The Antarctic occupies that region of the planet that falls below the 60th parallel of South latitude. Although it has been frequented by adventurers, journeyman scientists and tourists for the past 100 years, the Continent has remained virtually unoccupied. The intense cold, the absence of human occupation and the limited range of local higher animal species have combined to create the impression that the Continent is virtually devoid of life.

Although the microbiota of the Antarctic has attracted some small level of attention in the past, the examination of filamentous microfungi has been largely overlooked and fallen to a small group of dedicated investigators. In this study it will be shown that far from being an insignificant component of the Antarctic network, microfungi represent a potentially large and so far untapped bioresource.

From just 11 bryophyte samples collected at four sites in the Ross Sea/Dry Valleys region of Southern Antarctica, some 30 microfungal isolates were recovered. Using molecular techniques, the internal transcribed spacer (ITS) region of the nuclear ribosomal DNA (nrDNA) was sequenced to reveal no less than nine unique microfungal species. For only two of these species did the ITS sequence data produce a 100% match with records held on the public databases. This investigation also highlighted the problems inherent in the traditional morphological identification system which are now being perpetuated in the molecular database records.

A set of seven notionally identified isolates obtained from ornithogenic soil samples gathered in the Windmill Islands in Eastern Antarctica (offshore from the Australian
Antarctic Division’s Casey Station) were also subjected to molecular identification based on ITS sequence data. Each of the seven isolates was identified as a unique species; six were cosmopolitan in nature and the one remaining bore very little resemblance at the molecular level to any of the recorded species although it was provided with an epithet commonly used in the identification of Antarctic microfungal species.

To evaluate their potential as a bioresource, samples of Antarctic microfungi were examined to determine if the same physiological factors common to mesophilic species also applied to their Antarctic analogues. It is known that when placed under stress, trehalose can act as a protectant against cold (cryoprotection) and dehydration in mesophilic yeasts and fungi. The level of trehalose produced by the Antarctic isolates and their mesophilic analogues when subjected to stress was compared. A similar comparison was made for the production of glycerol which is well established as a compatible solute providing protection to mesophilic species against osmotic stress. Only in the case of trehalose production by an Antarctic *Embellisia* was there any indication that either of these two compounds could play a significant role in providing protection to the Antarctic fungi against the rigours of their environment, which leaves open to question what in fact does.

In the course of investigating the means by which Antarctic microfungi guard against the damage which can ensue when subjected to oxidative stress, flow cytometry was introduced as an investigatory tool. It was established that there is a window of opportunity during which flow cytometry can be used to undertake a detailed analysis of the early stages of fungal growth from germination through hyphal development.
Of major significance in determining the potential of Antarctic microfungi as a resource is their ability to produce new and novel enzymes and proteins. The microfungal isolates were screened for hydrolytic activity on solid media containing indicative substrates and proved to be a fruitful source of enzymes active over a range of temperatures. A detailed characterisation of two hemicellulases, β-mannanase and xylanase, secreted into a liquid medium by a subset of the Antarctic fungi and a high producing mesophilic reference strain permitted direct comparisons to be made. It was shown that the maximum hemicellulase activity of the Antarctic strains occurred at least 10ºC and as much as 30ºC lower than that of the reference strain and that mannanase activity for two of the Antarctic isolates exceeded 40% of their maximum at 0ºC. These assay results highlight the potential of Antarctic microfungi to yield novel cold-active enzymes.

As a final measure of the capacity of the Antarctic to yield novel enzymes from its microfungal stock, a lipase gene was selected as a target for isolation and expression in a heterologous fungal host. Using PCR techniques, the gene of interest was isolated from an Antarctic isolate of *Penicillium allii*, transformed into the mesophilic production host *Trichoderma reesei* and the active protein successfully produced in the growth medium. The recombinant lipase was assayed and found to exhibit novel characteristics consistent with a cold-adapted enzyme.
Preface

There are many people that should be acknowledged for the support they have given me over a long period of time. Firstly, I give my heartfelt thanks to my supervisor, Associate Professor Helena Nevalainen, for her friendship, guidance, encouragement over many years during the course of this study and throughout my undergraduate years. Her help and constructive criticism, particularly in the preparation of this document and other papers, was warmly appreciated. Special thanks also to my Associate Supervisor, Associate Professor Michael Gillings for his valued guidance in matters molecular, sequencing and in the preparation of this document and other papers.

I also extend my warmest thanks to all of my colleagues in the EDGE Laboratory at Macquarie University for providing such a pleasant working environment and in particular to Professor Peter Bergquist, Drs. Morland Gibbs, Junior Te’o, Roberto Anatori, Anwar Sunna and Noosha Ehya and Ms Roz Reeves and Ms Natalie Curach each of whom has helped me in some way during the course of this study, with either advice or constructive comment. I would also like to thank Professor Duncan Veal and Dr. Paul Attfield for their guidance and help with the flow cytometer, Dr Robert Willows for advice on biochemistry and my co-authors Dr. Philip Bell and in particular Dr. Rani Sidhu who provided invaluable assistance in the tedious task of assaying for hemicellulase activity.

Finally, I express my warmest thanks to my wife Dawn for her love, patience and support throughout this work and to my son Alexander who has helped me greatly with some of the more mystifying points of computer software.
List of original publications

This work is based on the following articles, referred to in the text by the Roman numerals given below. Additional unpublished data is also presented.

The author of this thesis had the main responsibility for the work contained in each of these publications and also for planning the experiments and writing the articles. The role of Assoc. Prof. Helena Nevalainen (publications I – V) and Assoc. Prof. Michael Gillings (I & II) was to act in their capacity as my supervisors, providing me with overall support and guidance and participated in the planning and evaluation of the experiments. Dr Rani Sidhu provided technical assistance in assaying for hemicellulase activity (II) and together with Miss Beta Yee, assisted in the isolation of the fungal material associated with the bryophytes collected in Antarctica by Dr. Patricia Selkirk and Dr. Mary Skotnicki (III). Dr. Philip Bell designed the suite of PCR primers used to identify the lipase gene in the Antarctic microfungus and Dr. Junior Te’o was responsible for engineering the plasmid utilised in the transformation of the heterologous fungal host and provided support with the biolistic transformation system (V). Sequencing with the ABI Prism automated fluorescent DNA sequencer was undertaken by the the staff of the facility at Macquarie University.
Contents

Declaration 2
Abstract 3
Preface 6
List of original publications 7
Contents 8
Abbreviations 12

1 Introduction 13
 1.1 The Antarctic environment 13
 1.2 Antarctic inhabitants 16
 1.2.1 Macrospecies 16
 1.2.1.1 Indigenous species 16
 1.2.1.2 Alien species 17
 1.2.2 Microspecies 18
 1.2.2.1 Invertebrates 19
 1.2.2.2 Microflora 19
 1.2.2.3 Lichens 20
 1.2.2.4 Filamentous fungi and yeasts 21
 1.2.2.5 Other microorganisms 22
 1.3 Microfungi 22
 1.3.1 Fungi associated with ornithogenic coastal soil 23
 1.3.2 Fungi associated with bryophytes 23
 1.4 Identification of microfungi 24
 1.4.1 Identification based on morphology 25
 1.4.2 Identification based upon molecular techniques 26
 1.4.2.1 RAPD 27
 1.4.2.2 UP-PCR 27
 1.4.2.3 RFLP 28
 1.4.2.4 DNA sequence analysis 28
 1.5 Physiological factors affecting Antarctic microfungi 29
 1.5.1 Stresses encountered by Antarctic microfungi 30
 1.5.2 Stress response by Antarctic microfungi 31
 1.5.3 Cross protection in response to stress 32
 1.5.4 Trehalose and compatible solutes 33
 1.5.4.1 Trehalose as a storage carbohydrate 34
 1.5.4.2 The protective role of trehalose 35
 1.5.4.3 Glycerol as a compatible solute 36
 1.5.5 Oxidative stress 37
1.6 Flow Cytometry and Microfungi
 1.6.1 Instrumentation 39
 1.6.2 Application of flow cytometry 41

1.7 Hydrolytic enzymes of industrial interest 41
 1.7.1 Cold adapted enzymes – structure and function 43
 1.7.2 Industrial application of cold-adapted enzymes 49
 1.7.3 Screening for enzyme activity 50
 1.7.4 Hemicellulases 53
 1.7.4.1 The nature of hemicelluloses 53
 1.7.4.2 Enzymatic degradation of hemicelluloses 54
 1.7.4.3 Applications of hemicellulases 56
 1.7.5 Lipase 58

1.8 Isolation of genes from microfungi 60
 1.8.1 Methods used for gene isolation 60
 1.8.1.1 Special considerations when isolating lipase genes from fungi 61
 1.8.2 Expression of novel genes in heterologous hosts 62
 1.8.2.1 Selection of a promoter 62
 1.8.2.2 Transformation strategies 63

1.9 Aims of this study 65

2 Materials and methods 67
 2.1 Fungal strains and cultivation conditions 67
 2.1.1 Ornithogenic species 67
 2.1.2 Bryophytic species 67
 2.1.3 Mesophilic species 71

 2.2 Molecular identification of fungal isolates 71
 2.2.1 DNA extraction 71
 2.2.2 SSU nrDNA (18S) gene 71
 2.2.3 Internal transcribed spacer (ITS) region of nrDNA 74

 2.3 Fungal physiology 75
 2.3.1 Trehalose production 75
 2.3.2 Glycerol production 76
 2.3.3 Antioxidant activity 77
 2.3.4 Flow cytometry 78

 2.4 Hydrolase activity of secreted proteins 78
 2.4.1 Screening for hydrolase activity on solid media 78
 2.4.2 Hemicellulase activity assays 81

 2.5 Gene cloning and expression 81
 2.5.1 Further characterisation of the lipase 81
 2.5.2 Protein modelling 82
3 Results and Discussion

3.1 Microfungal identification
 3.1.1 Morphological identification of microfungi isolated from Windmill Islands and Marble Point
 3.1.2 Molecular identification
 3.1.2.1 RFLP analysis of 18S gene and 18S sequence data
 3.1.2.2 RFLP of the ITS region
 3.1.2.3 ITS sequence data of all Antarctic isolates

3.2 Physiological factors affecting Antarctic microfungi
 3.2.1 Trehalose production and its implications as a cryoprotectant
 3.2.2 The potential of glycerol as a compatible solute to protect against osmotic stress
 3.2.3 Oxidative stress response in antarctic microfungi
 3.2.3.1 Qualitative evaluation
 3.2.3.2 Quantitative evaluation using flow cytometry

3.3 Activity in antarctic microfungi when grown on solid media
 3.3.1 Growth patterns at low temperature
 3.3.2 Qualitative assessment of hydrolytic activity over a range of temperatures
 3.3.2.1 Growth of fungal colonies on different carbon sources
 3.3.2.2 Relative enzyme activity levels

3.4 Characterisation of hemicellulases from selected Antarctic Microfungi
 3.4.1 Mannanase activity
 3.4.2 Xylanase activity

3.5 Cloning of an antarctic Penicillium allii lipase gene and its expression in Trichoderma reesei
 3.5.1 Isolation and identification of lipase gene
 3.5.2 Transformation and expression in T. reesei
 3.5.3 Characterisation of the recombinant lipase
 3.5.4 Modelled structure of the protein encoded by lipPA

4 Conclusions and Future Prospects

References

Appendices
I Qualitative assessment of hydrolytic activities in antarctic microfungi grown at different temperatures on solid media
II Hemicellulase activity of antarctic microfungi
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>III</td>
<td>A new microfungal isolate, Embellisia sp., associated with the Antarctic moss Bryum argenteum</td>
<td>168</td>
</tr>
<tr>
<td>IV</td>
<td>Metabolic activity in filamentous fungi can be analysed by flow cytometry</td>
<td>171</td>
</tr>
<tr>
<td>V</td>
<td>The application of PCR for the isolation of a lipase from the genomic DNA of an Antarctic microfungus</td>
<td>180</td>
</tr>
</tbody>
</table>
Abbreviations

aa amino acid
Ala alanine
App Appendix
Arg arginine
Asn asparagine
BAC bacterial artificial chromosome
bp base pairs
DHE dihydroethidium (a fluorescent stain)
FC flow cytometry/cytometer
FL fluorescence
FSC forward scatter
gDNA genomic DNA
Glu glutamic acid
HI hexidium iodide
IPTG isopropyl-β-D-thiogalactosidase
ITS internal transcribed spacer region
Kbp kilo base pairs
kcat dissociation rate (s⁻¹) - Michaelis-Menten kinetics
kDa kilo Dalton
Kₘ Michaelis constant (mol L⁻¹) - Michaelis-Menten kinetics
lat latitude
LB Luria-Bertani (medium)
L-broth Luria-Bertani broth
Lys lysine
nrDNA ribosomal DNA (nuclear)
nt nucleotide
PCR polymerase chain reaction
PD potato dextrose
PDA potato dextrose agar
PMT photomultiplier tube
RAPD randomly amplified polymorphic DNA
RFLP restriction fragment length polymorphism
ROS reactive oxygen species
R/T room temperature
S.E. Standard Error
sq km square kilometre
SSC side scatter
SSU small sub-unit
uv ultra violet light
UP-PCR universally primed PCR
Val valine
v/v volume/volume
w/v weight/volume
X-gal 5-bromo-4-chloro-3-indolyl-β-D-galactosidase